Spaces:
Runtime error
Runtime error
| import spaces | |
| from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
| from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import torch | |
| import gradio as gr | |
| import time | |
| import copy | |
| import numpy as np | |
| BATCH_SIZE = 16 | |
| MAX_AUDIO_MINS = 30 # maximum audio input in minutes | |
| N_WARMUP = 3 | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "sdpa" if is_torch_sdpa_available() else "eager" | |
| model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| "openai/whisper-large-v3", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation | |
| ) | |
| distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
| "eustlb/distil-large-v3-fr", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation | |
| ) | |
| processor = AutoProcessor.from_pretrained("openai/whisper-large-v3") | |
| model.to(device) | |
| distilled_model.to(device) | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=30, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| generate_kwargs={"language": "fr", "task": "transcribe"}, | |
| return_timestamps=True | |
| ) | |
| pipe_forward = pipe._forward | |
| distil_pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=distilled_model, | |
| tokenizer=processor.tokenizer, | |
| feature_extractor=processor.feature_extractor, | |
| max_new_tokens=128, | |
| chunk_length_s=25, | |
| torch_dtype=torch_dtype, | |
| device=device, | |
| generate_kwargs={"language": "fr", "task": "transcribe"}, | |
| ) | |
| distil_pipe_forward = distil_pipe._forward | |
| def warmup(): | |
| inputs = np.random.randn(30 * pipe.feature_extractor.sampling_rate) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| for _ in range(N_WARMUP): | |
| _ = pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"] | |
| _ = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"] | |
| def transcribe(inputs): | |
| # warmup the gpu | |
| print("Warming up...") | |
| warmup() | |
| print("Models warmed up!") | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.") | |
| with open(inputs, "rb") as f: | |
| inputs = f.read() | |
| inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
| audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60 | |
| if audio_length_mins > MAX_AUDIO_MINS: | |
| raise gr.Error( | |
| f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes." | |
| f"Got an audio of length {round(audio_length_mins, 3)} minutes." | |
| ) | |
| inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
| def _forward_distil_time(*args, **kwargs): | |
| global distil_runtime | |
| start_time = time.time() | |
| result = distil_pipe_forward(*args, **kwargs) | |
| distil_runtime = time.time() - start_time | |
| distil_runtime = round(distil_runtime, 2) | |
| return result | |
| distil_pipe._forward = _forward_distil_time | |
| distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"] | |
| yield distil_text, distil_runtime, None, None, None | |
| def _forward_time(*args, **kwargs): | |
| global runtime | |
| start_time = time.time() | |
| result = pipe_forward(*args, **kwargs) | |
| runtime = time.time() - start_time | |
| runtime = round(runtime, 2) | |
| return result | |
| pipe._forward = _forward_time | |
| text = pipe(inputs, batch_size=BATCH_SIZE)["text"] | |
| yield distil_text, distil_runtime, text, runtime | |
| if __name__ == "__main__": | |
| with gr.Blocks() as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div | |
| style=" | |
| display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
| Whisper vs distil-large-v3-fr: Speed Comparison | |
| </h1> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| gr.HTML( | |
| f""" | |
| <p><a href="https://huggingface.co/eustlb/distil-large-v3-fr">distil-large-v3-fr</a> is a distilled variant | |
| of the <a href="https://huggingface.co/openai/whisper-large-v3"> Whisper</a> model by OpenAI. Compared to Whisper, | |
| distil-large-v3 runs 6x faster with 50% fewer parameters, while performing to within 1% word error rate (WER) on | |
| out-of-distribution evaluation data.</p> | |
| <p>In this demo, we perform a speed comparison between Whisper and distil-whisper-large-v3 in order to test this claim. | |
| Both models use the <a href="https://huggingface.co/distil-whisper/distil-large-v3#chunked-long-form"> chunked long-form transcription algorithm</a> | |
| in 🤗 Transformers. To use distil-large-3-fr, check the code examples on the | |
| <a href="https://github.com/huggingface/distil-whisper#1-usage"> Distil-Whisper repository</a>. To ensure fair | |
| usage of the Space, we ask that audio file inputs are kept to < 30 mins.</p> | |
| """ | |
| ) | |
| audio = gr.components.Audio(type="filepath", label="Audio input") | |
| button = gr.Button("Transcribe") | |
| with gr.Row(): | |
| distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)") | |
| runtime = gr.components.Textbox(label="Whisper Transcription Time (s)") | |
| with gr.Row(): | |
| distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True) | |
| transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True) | |
| button.click( | |
| fn=transcribe, | |
| inputs=audio, | |
| outputs=[distil_transcription, distil_runtime, transcription, runtime], | |
| ) | |
| gr.Markdown("## Examples") | |
| gr.Examples( | |
| [["./assets/example_1.wav"], ["./assets/example_2.wav"]], | |
| audio, | |
| outputs=[distil_transcription, distil_runtime, transcription, runtime], | |
| fn=transcribe, | |
| cache_examples=False, | |
| ) | |
| demo.queue(max_size=10).launch() | |