Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from
|
4 |
|
5 |
-
|
|
|
|
|
6 |
|
|
|
7 |
meo_system = os.environ.get("MEO")
|
8 |
|
9 |
def respond(
|
10 |
message,
|
11 |
-
history
|
12 |
max_tokens,
|
13 |
temperature,
|
14 |
top_p,
|
15 |
):
|
|
|
16 |
messages = [{"role": "system", "content": meo_system}]
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
messages.append({"role": "user", "content": val[0]})
|
21 |
-
if val[1]:
|
22 |
-
messages.append({"role": "assistant", "content": val[1]})
|
23 |
-
|
24 |
messages.append({"role": "user", "content": message})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
temperature=temperature,
|
33 |
top_p=top_p,
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
-
|
39 |
|
|
|
40 |
|
|
|
41 |
demo = gr.ChatInterface(
|
42 |
respond,
|
43 |
additional_inputs=[
|
44 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
45 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
46 |
gr.Slider(
|
47 |
minimum=0.1,
|
@@ -53,6 +57,5 @@ demo = gr.ChatInterface(
|
|
53 |
],
|
54 |
)
|
55 |
|
56 |
-
|
57 |
if __name__ == "__main__":
|
58 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
|
5 |
+
# Load the tokenizer and model using the pipeline
|
6 |
+
pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B")
|
8 |
|
9 |
+
# Get the system prompt from environment variables
|
10 |
meo_system = os.environ.get("MEO")
|
11 |
|
12 |
def respond(
|
13 |
message,
|
14 |
+
history,
|
15 |
max_tokens,
|
16 |
temperature,
|
17 |
top_p,
|
18 |
):
|
19 |
+
# Format the messages for the pipeline
|
20 |
messages = [{"role": "system", "content": meo_system}]
|
21 |
+
for user_msg, bot_msg in history:
|
22 |
+
messages.append({"role": "user", "content": user_msg})
|
23 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
|
|
|
|
|
|
|
|
24 |
messages.append({"role": "user", "content": message})
|
25 |
|
26 |
+
# Generate the prompt using the tokenizer's chat template
|
27 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
28 |
|
29 |
+
# Generate the response using the pipeline
|
30 |
+
outputs = pipe(
|
31 |
+
prompt,
|
32 |
+
max_new_tokens=max_tokens,
|
33 |
+
do_sample=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
+
return_full_text=False # We only want the generated part
|
37 |
+
)
|
38 |
|
39 |
+
# Extract the generated text
|
40 |
+
response = outputs[0]['generated_text']
|
41 |
|
42 |
+
return response
|
43 |
|
44 |
+
# Create the Gradio interface
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
49 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
50 |
gr.Slider(
|
51 |
minimum=0.1,
|
|
|
57 |
],
|
58 |
)
|
59 |
|
|
|
60 |
if __name__ == "__main__":
|
61 |
+
demo.launch()
|