|
import gradio as gr |
|
import nemo.collections.asr as nemo_asr |
|
from pydub import AudioSegment |
|
import os |
|
import yt_dlp as youtube_dl |
|
from huggingface_hub import login |
|
from hazm import Normalizer |
|
import numpy as np |
|
import re |
|
import time |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if not HF_TOKEN: |
|
raise ValueError("HF_TOKEN environment variable not set. Please provide a valid Hugging Face token.") |
|
|
|
|
|
login(HF_TOKEN) |
|
|
|
|
|
try: |
|
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained( |
|
model_name="faimlab/stt_fa_fastconformer_hybrid_large_dataset_v30" |
|
) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load model: {str(e)}") |
|
|
|
normalizer = Normalizer() |
|
|
|
def load_audio(audio_path): |
|
audio = AudioSegment.from_file(audio_path) |
|
audio = audio.set_channels(1).set_frame_rate(16000) |
|
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32) |
|
audio_samples /= np.max(np.abs(audio_samples)) |
|
return audio_samples, audio.frame_rate |
|
|
|
def transcribe_chunk(audio_chunk, model): |
|
transcription = model.transcribe([audio_chunk], batch_size=1, verbose=False) |
|
return transcription[0].text |
|
|
|
def transcribe_audio(file_path, model, chunk_size=30*16000): |
|
waveform, _ = load_audio(file_path) |
|
transcriptions = [] |
|
for start in range(0, len(waveform), chunk_size): |
|
end = min(len(waveform), start + chunk_size) |
|
transcription = transcribe_chunk(waveform[start:end], model) |
|
transcriptions.append(transcription) |
|
|
|
transcriptions = ' '.join(transcriptions) |
|
transcriptions = re.sub(' +', ' ', transcriptions) |
|
transcriptions = normalizer.normalize(transcriptions) |
|
|
|
return transcriptions |
|
|
|
|
|
YT_LENGTH_LIMIT_S = 3600 |
|
|
|
def download_yt_audio(yt_url, filename, cookie_file="cookies.txt"): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best", "cookies": cookie_file} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
|
|
def transcribe(audio): |
|
if audio is None: |
|
return "Please upload an audio file." |
|
|
|
transcription = transcribe_audio(audio, asr_model) |
|
|
|
return transcription |
|
|
|
def transcribe_yt(yt_url): |
|
temp_filename = "/tmp/yt_audio.mp4" |
|
download_yt_audio(yt_url, temp_filename) |
|
transcription = transcribe_audio(temp_filename, asr_model) |
|
return transcription |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Microphone(type="filepath"), |
|
outputs=gr.Textbox(label="Transcription"), |
|
theme="huggingface", |
|
title="Persian ASR Transcription with NeMo Fast Conformer", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the NeMo's Fast Conformer Hybrid Large.\n\n" |
|
"Trained on ~800 hours of Persian speech dataset (Common Voice 17 (~300 hours), YouTube (~400 hours), NasleMana (~90 hours), In-house dataset (~70 hours)).\n\n" |
|
"For commercial applications, contact us via email: <[email protected]>.\n\n" |
|
"Credit FAIM Group, Sharif University of Technology.\n\n" |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
|
|
file_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Audio(type="filepath", label="Audio file"), |
|
outputs=gr.Textbox(label="Transcription"), |
|
theme="huggingface", |
|
title="Persian ASR Transcription with NeMo Fast Conformer", |
|
description=( |
|
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the NeMo's Fast Conformer Hybrid Large.\n\n" |
|
"Trained on ~800 hours of Persian speech dataset (Common Voice 17 (~300 hours), YouTube (~400 hours), NasleMana (~90 hours), In-house dataset (~70 hours)).\n\n" |
|
"For commercial applications, contact us via email: <[email protected]>.\n\n" |
|
"Credit FAIM Group, Sharif University of Technology.\n\n" |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
|
|
yt_transcribe = gr.Interface( |
|
fn=transcribe_yt, |
|
inputs=gr.Textbox(label="YouTube URL", placeholder="Enter the YouTube URL here"), |
|
outputs=gr.Textbox(label="Transcription"), |
|
theme="huggingface", |
|
title="Transcribe YouTube Video", |
|
description="Transcribe audio from a YouTube video by providing its URL. Currently YouTube is blocking the requests. So you will see the app showing error", |
|
allow_flagging="never", |
|
) |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
|
|
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) |
|
|
|
demo.launch() |