File size: 5,456 Bytes
1597f7e
 
 
 
 
 
 
 
e23690a
 
 
 
 
24d2f6f
e23690a
 
d85f4e7
e23690a
d85f4e7
24d2f6f
 
 
 
d85f4e7
 
 
 
 
 
 
 
 
 
 
 
 
 
4c178d3
d85f4e7
 
24d2f6f
d85f4e7
24d2f6f
d85f4e7
 
 
 
 
 
 
24d2f6f
 
e23690a
 
24d2f6f
1597f7e
24d2f6f
 
1597f7e
d85f4e7
 
 
 
 
 
 
 
 
1597f7e
d85f4e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24d2f6f
1597f7e
d85f4e7
24d2f6f
1597f7e
d85f4e7
4c178d3
d85f4e7
e23690a
d85f4e7
 
 
 
 
 
 
4c178d3
d85f4e7
24d2f6f
 
 
e23690a
d85f4e7
e23690a
 
4c178d3
e23690a
4c178d3
 
1597f7e
24d2f6f
4c178d3
24d2f6f
d85f4e7
1597f7e
 
 
 
 
 
 
24d2f6f
 
d85f4e7
 
24d2f6f
 
 
 
 
 
 
 
1597f7e
 
 
 
 
24d2f6f
1597f7e
 
 
 
24d2f6f
1597f7e
 
 
d85f4e7
1597f7e
 
 
 
 
4c178d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
import requests
from io import BytesIO

def load_and_process_data():
    try:
        url = "https://huggingface.co/datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
        response = requests.get(url)
        df = pd.read_parquet(BytesIO(response.content))
        
        # 30์ผ์น˜ ๋ฐ์ดํ„ฐ ์ค€๋น„
        thirty_days_ago = datetime.now() - timedelta(days=30)
        df['createdAt'] = pd.to_datetime(df['createdAt'])
        df = df[df['createdAt'] >= thirty_days_ago].copy()
        
        # ๋‚ ์งœ๋ณ„ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ
        dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
        daily_ranks = []
        
        for date in dates:
            # ํ•ด๋‹น ๋‚ ์งœ์˜ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
            date_data = df[df['createdAt'].dt.date <= date.date()].copy()
            
            # trendingScore๊ฐ€ ๊ฐ™์€ ๊ฒฝ์šฐ id๋กœ ์ •๋ ฌํ•˜์—ฌ ์œ ๋‹ˆํฌํ•œ ์ˆœ์œ„ ๋ณด์žฅ
            date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
            
            # ์ˆœ์œ„ ๊ณ„์‚ฐ
            date_data['rank'] = range(1, len(date_data) + 1)
            date_data['date'] = date.date()
            
            # ํ•„์š”ํ•œ ์ปฌ๋Ÿผ๋งŒ ์„ ํƒ
            daily_ranks.append(
                date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']]
            )
        
        # ์ „์ฒด ๋ฐ์ดํ„ฐ ๋ณ‘ํ•ฉ
        daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
        
        # ์ตœ์‹  ๋‚ ์งœ์˜ top 100 ์ถ”์ถœ
        latest_date = daily_ranks_df['date'].max()
        top_100_spaces = daily_ranks_df[
            daily_ranks_df['date'] == latest_date
        ].sort_values('rank').head(100).copy()
        
        print(f"Total records: {len(daily_ranks_df)}")
        print(f"Unique spaces: {len(daily_ranks_df['id'].unique())}")
        print(f"Date range: {daily_ranks_df['date'].min()} to {daily_ranks_df['date'].max()}")
        
        return daily_ranks_df, top_100_spaces
    except Exception as e:
        print(f"Error loading data: {e}")
        return pd.DataFrame(), pd.DataFrame()

def create_trend_chart(space_id, daily_ranks_df):
    if space_id is None or daily_ranks_df.empty:
        return None
    
    try:
        # ํŠน์ • space์˜ ๋ฐ์ดํ„ฐ๋งŒ ํ•„ํ„ฐ๋ง
        space_data = daily_ranks_df[daily_ranks_df['id'] == space_id].copy()
        if space_data.empty:
            return None
        
        # ๋ฐ์ดํ„ฐ ์ •๋ ฌ
        space_data = space_data.sort_values('date')
        
        fig = px.line(
            space_data,
            x='date',
            y='rank',
            title=f'Daily Rank Trend for {space_id}',
            labels={'date': 'Date', 'rank': 'Rank'},
            markers=True
        )
        
        fig.update_layout(
            xaxis_title="Date",
            yaxis_title="Rank",
            yaxis_autorange="reversed",  # ์ˆœ์œ„ 1์ด ์œ„์ชฝ์— ์˜ค๋„๋ก
            hovermode='x unified',
            plot_bgcolor='white',
            paper_bgcolor='white'
        )
        
        return fig
    except Exception as e:
        print(f"Error creating chart: {e}")
        return None

def update_display(selection):
    global daily_ranks_df
    
    if not selection:
        return None, "Please select a space"
    
    try:
        # ์„ ํƒ๋œ ํ•ญ๋ชฉ์—์„œ space ID ์ถ”์ถœ
        space_id = selection.split(': ')[1].split(' (Score')[0]
        
        # ์ตœ์‹  ๋ฐ์ดํ„ฐ ๊ฐ€์ ธ์˜ค๊ธฐ
        latest_data = daily_ranks_df[
            daily_ranks_df['id'] == space_id
        ].sort_values('date').iloc[-1]
        
        info_text = f"""ID: {space_id}
Current Rank: {int(latest_data['rank'])}
Trending Score: {latest_data['trendingScore']:.2f}
Created At: {latest_data['createdAt'].strftime('%Y-%m-%d')}"""
        
        chart = create_trend_chart(space_id, daily_ranks_df)
        
        return chart, info_text
        
    except Exception as e:
        print(f"Error in update_display: {e}")
        return None, f"Error processing data: {str(e)}"

# ๋ฐ์ดํ„ฐ ๋กœ๋“œ
print("Loading initial data...")
daily_ranks_df, top_100_spaces = load_and_process_data()
print("Data loaded.")

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Trending Spaces Dashboard")
    
    with gr.Row():
        with gr.Column(scale=1):
            # ์ˆœ์œ„๊ฐ€ ํฌํ•จ๋œ ๋ฆฌ์ŠคํŠธ๋กœ ํ‘œ์‹œ
            space_choices = [
                f"Rank {row['rank']}: {row['id']} (Score: {row['trendingScore']:.2f})"
                for _, row in top_100_spaces.iterrows()
            ]
            
            space_list = gr.Radio(
                choices=space_choices,
                label="Top 100 Trending Spaces",
                info="Select a space to view its rank trend",
                value=space_choices[0] if space_choices else None
            )
            
            info_box = gr.Textbox(
                label="Space Details",
                value="",
                interactive=False,
                lines=4
            )
        
        with gr.Column(scale=2):
            trend_plot = gr.Plot(
                label="Daily Rank Trend"
            )
    
    space_list.change(
        fn=update_display,
        inputs=[space_list],
        outputs=[trend_plot, info_box]
    )

if __name__ == "__main__":
    demo.launch(share=True)