File size: 9,505 Bytes
6c82c95
 
 
 
 
 
 
ebc901f
 
6c82c95
44ba602
6c82c95
44ba602
 
 
6c82c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc901f
 
6c82c95
 
 
 
44ba602
6c82c95
 
 
 
44ba602
6c82c95
 
 
ce9c540
6c82c95
 
 
 
 
44ba602
 
 
 
6c82c95
 
44ba602
6c82c95
083f815
 
44ba602
 
6c82c95
 
44ba602
 
6c82c95
 
 
44ba602
6c82c95
44ba602
 
6c82c95
 
ce9c540
6c82c95
 
 
 
44ba602
6c82c95
 
 
 
 
 
 
 
083f815
6c82c95
 
 
 
 
 
 
 
 
 
 
44ba602
6c82c95
 
 
44ba602
 
6c82c95
 
44ba602
6c82c95
 
 
44ba602
6c82c95
 
ce9c540
6c82c95
 
 
 
ebc901f
6c82c95
 
 
 
 
 
 
 
 
44ba602
ebc901f
 
083f815
 
 
 
 
 
 
 
 
ce9c540
 
 
 
 
 
 
 
 
 
 
 
44ba602
 
6c82c95
 
f02b7b3
6c82c95
 
 
083f815
6c82c95
083f815
6c82c95
 
 
f02b7b3
505b98a
 
083f815
 
2918353
f02b7b3
 
 
083f815
f02b7b3
 
 
 
 
 
083f815
f02b7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
083f815
6c82c95
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gradio as gr
import json
from difflib import Differ
import ffmpeg
import os
from pathlib import Path
import time
import aiohttp
import asyncio

# Set true if you're using huggingface inference API
API_BACKEND = True
# 변경된 모델 식별자
MODEL = "openai/whisper-small"

if API_BACKEND:
    from dotenv import load_dotenv
    import base64
    load_dotenv(Path(".env"))

    HF_TOKEN = os.environ["HF_TOKEN"]
    headers = {"Authorization": f"Bearer {HF_TOKEN}"}
    API_URL = f'https://api-inference.huggingface.co/models/{MODEL}'

videos_out_path = Path("./videos_out")
videos_out_path.mkdir(parents=True, exist_ok=True)

samples_data = sorted(Path('examples').glob('*.json'))
SAMPLES = []
for file in samples_data:
    with open(file) as f:
        sample = json.load(f)
    SAMPLES.append(sample)
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))

total_inferences_since_reboot = 415
total_cuts_since_reboot = 1539


async def speech_to_text(video_file_path):
    global total_inferences_since_reboot
    if video_file_path is None:
        raise ValueError("Error no video input")

    video_path = Path(video_file_path)
    try:
        audio_memory, _ = ffmpeg.input(video_path).output('-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
    except Exception as e:
        raise RuntimeError("Error converting video to audio")

    ping("speech_to_text")
    if API_BACKEND:
        for i in range(10):
            for tries in range(4):
                print(f'Transcribing from API attempt {tries}')
                try:
                    inference_response = await query_api(audio_memory)
                    print(inference_response)
                    transcription = inference_response["text"].lower()
                    timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]] for chunk in inference_response['chunks']]

                    total_inferences_since_reboot += 1
                    print("\n\ntotal_inferences_since_reboot: ", total_inferences_since_reboot, "\n\n")
                    return (transcription, transcription, timestamps)
                except Exception as e:
                    print(e)
                    if 'error' in inference_response and 'estimated_time' in inference_response:
                        wait_time = inference_response['estimated_time']
                        print("Waiting for model to load....", wait_time)
                        await asyncio.sleep(wait_time + 5.0)
                    elif 'error' in inference_response:
                        raise RuntimeError("Error Fetching API", inference_response['error'])
                    else:
                        break
            else:
                raise RuntimeError("Error Fetching API")
    else:
        # Local model handling would go here, but is not applicable for Whisper model without Hugging Face pipeline support
        pass


async def cut_timestamps_to_video(video_in, transcription, text_in, timestamps):
    global total_cuts_since_reboot

    video_path = Path(video_in)
    video_file_name = video_path.stem
    if video_in is None or text_in is None or transcription is None:
        raise ValueError("Inputs undefined")

    d = Differ()
    diff_chars = d.compare(transcription, text_in)
    filtered = list(filter(lambda x: x[0] != '+', diff_chars))

    idx = 0
    grouped = {}
    for (a, b) in zip(filtered, timestamps):
        if a[0] != '-':
            if idx in grouped:
                grouped[idx].append(b)
            else:
                grouped[idx] = []
                grouped[idx].append(b)
        else:
            idx += 1

    timestamps_to_cut = [[v[0][1], v[-1][2]] for v in grouped.values()]

    between_str = '+'.join(map(lambda t: f'between(t,{t[0]},{t[1]})', timestamps_to_cut))

    if timestamps_to_cut:
        video_file = ffmpeg.input(video_in)
        video = video_file.video.filter("select", f'({between_str})').filter("setpts", "N/FRAME_RATE/TB")
        audio = video_file.audio.filter("aselect", f'({between_str})').filter("asetpts", "N/SR/TB")

        output_video = f'./videos_out/{video_file_name}.mp4'
        ffmpeg.concat(video, audio, v=1, a=1).output(output_video).overwrite_output().global_args('-loglevel', 'quiet').run()
    else:
        output_video = video_in

    tokens = [(token[2:], token[0] if token[0] != " " else None) for token in filtered]

    total_cuts_since_reboot += 1
    ping("video_cuts")
    print("\n\ntotal_cuts_since_reboot: ", total_cuts_since_reboot, "\n\n")
    return (tokens, output_video)


async def query_api(audio_bytes: bytes):
    payload = json.dumps({
        "inputs": base64.b64encode(audio_bytes).decode("utf-8"),
        "parameters": {
            "return_timestamps": "char",
            "chunk_length_s": 10,
            "stride_length_s": [4, 2]
        },
        "options": {"use_gpu": False}
    }).encode("utf-8")

    async with aiohttp.ClientSession() as session:
        async with session.post(API_URL, headers=headers, data=payload) as response:
            print("API Response: ", response.status)
            if response.headers['Content-Type'] == 'application/json':
                return await response.json()
            elif response.headers['Content-Type'] == 'application/octet-stream':
                return await response.read()
            elif response.headers['Content-Type'] == 'text/plain':
                return await response.text()
            else:
                raise RuntimeError("Error Fetching API")


def ping(name):
    url = f'https://huggingface.co/api/telemetry/spaces/radames/edit-video-by-editing-text/{name}'
    print("ping: ", url)

    async def req():
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as response:
                print("pong: ", response.status)
    asyncio.create_task(req())

# Gradio Layout and rest of the code remains the same as before.


# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", elem_id="video-container")
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
video_out = gr.Video(label="Video Out")
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
examples = gr.Dataset(components=[video_in], samples=VIDEOS, type="index")

css = """
#cut_btn, #reset_btn { align-self:stretch; }
#\\31 3 { max-width: 540px; }
.output-markdown {max-width: 65ch !important;}
#video-container{
    max-width: 40rem;
}
"""
with gr.Blocks(css=css) as demo:
    transcription_var = gr.State()
    timestamps_var = gr.State()
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            # Edit Video By Editing Text
            This project is a quick proof of concept of a simple video editor where the edits
            are made by editing the audio transcription.
            Using the [Huggingface Automatic Speech Recognition Pipeline](https://huggingface.co/tasks/automatic-speech-recognition)
            with a fine tuned [Wav2Vec2 model using Connectionist Temporal Classification (CTC)](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self)
            you can predict not only the text transcription but also the [character or word base timestamps](https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline.__call__.return_timestamps)
            """)

    with gr.Row():

        examples.render()

        def load_example(id):
            video = SAMPLES[id]['video']
            transcription = SAMPLES[id]['transcription'].lower()
            timestamps = SAMPLES[id]['timestamps']

            return (video, transcription, transcription, timestamps)

        examples.click(
            load_example,
            inputs=[examples],
            outputs=[video_in, text_in, transcription_var, timestamps_var],
            queue=False)
    with gr.Row():
        with gr.Column():
            video_in.render()
            transcribe_btn = gr.Button("Transcribe Audio")
            transcribe_btn.click(speech_to_text, [video_in], [
                text_in, transcription_var, timestamps_var])

    with gr.Row():
        gr.Markdown("""
        ### Now edit as text
        After running the video transcription, you can make cuts to the text below (only cuts, not additions!)""")

    with gr.Row():
        with gr.Column():
            text_in.render()
            with gr.Row():
                cut_btn = gr.Button("Cut to video", elem_id="cut_btn")
                # send audio path and hidden variables
                cut_btn.click(cut_timestamps_to_video, [
                    video_in, transcription_var, text_in, timestamps_var], [diff_out, video_out])

                reset_transcription = gr.Button(
                    "Reset to last trascription", elem_id="reset_btn")
                reset_transcription.click(
                    lambda x: x, transcription_var, text_in)
        with gr.Column():
            video_out.render()
            diff_out.render()
    with gr.Row():
        gr.Markdown("""
        #### Video Credits

        1. [Cooking](https://vimeo.com/573792389)
        1. [Shia LaBeouf "Just Do It"](https://www.youtube.com/watch?v=n2lTxIk_Dr0)
        1. [Mark Zuckerberg & Yuval Noah Harari in Conversation](https://www.youtube.com/watch?v=Boj9eD0Wug8)
        """)
demo.queue()
if __name__ == "__main__":
    demo.launch(debug=True)