Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,50 +2,20 @@ import spaces
|
|
2 |
import argparse
|
3 |
import os
|
4 |
import time
|
5 |
-
import gc
|
6 |
from os import path
|
7 |
-
import shutil
|
8 |
-
from datetime import datetime
|
9 |
-
import traceback
|
10 |
from safetensors.torch import load_file
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
-
import gradio as gr
|
13 |
-
import torch
|
14 |
-
from diffusers import FluxPipeline
|
15 |
-
from diffusers.pipelines.stable_diffusion import safety_checker
|
16 |
-
from PIL import Image
|
17 |
|
18 |
-
# Setup and initialization code
|
19 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
20 |
-
|
21 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
22 |
os.environ["HF_HUB_CACHE"] = cache_path
|
23 |
os.environ["HF_HOME"] = cache_path
|
24 |
|
25 |
-
|
26 |
-
torch
|
27 |
-
|
28 |
|
29 |
-
|
30 |
-
# ๋ถ์ ์ ํ ํค์๋ ๋ชฉ๋ก
|
31 |
-
inappropriate_keywords = [
|
32 |
-
# ์๋/์ฑ์ ํค์๋
|
33 |
-
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
|
34 |
-
"erotic", "sensual", "seductive", "provocative", "intimate",
|
35 |
-
# ํญ๋ ฅ์ ํค์๋
|
36 |
-
"violence", "gore", "blood", "death", "kill", "murder", "torture",
|
37 |
-
# ๊ธฐํ ๋ถ์ ์ ํ ํค์๋
|
38 |
-
"drug", "suicide", "abuse", "hate", "discrimination"
|
39 |
-
]
|
40 |
-
|
41 |
-
prompt_lower = prompt.lower()
|
42 |
-
|
43 |
-
# ๋ถ์ ์ ํ ํค์๋ ์ฒดํฌ
|
44 |
-
for keyword in inappropriate_keywords:
|
45 |
-
if keyword in prompt_lower:
|
46 |
-
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
|
47 |
-
|
48 |
-
return True, prompt
|
49 |
|
50 |
class timer:
|
51 |
def __init__(self, method_name="timed process"):
|
@@ -57,320 +27,172 @@ class timer:
|
|
57 |
end = time.time()
|
58 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
gc.collect()
|
77 |
-
torch.cuda.empty_cache()
|
78 |
-
|
79 |
-
with timer("๋ชจ๋ธ ๋ก๋ฉ"):
|
80 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
81 |
-
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
|
82 |
-
pipe.load_lora_weights(lora_path)
|
83 |
-
pipe.fuse_lora(lora_scale=0.125)
|
84 |
-
|
85 |
-
# ์ฃผ์: ์ฌ๊ธฐ์ device๋ฅผ ๋ช
์์ ์ผ๋ก ์ง์ (๋ชจ๋ ์ปดํฌ๋ํธ์ ์ ์ฉ)
|
86 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
87 |
-
|
88 |
-
# ์์ ๊ฒ์ฌ๊ธฐ ์ถ๊ฐ ๋ฐ ์ฌ๋ฐ๋ฅธ ์ฅ์น๋ก ์ด๋
|
89 |
-
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
90 |
-
if hasattr(pipe, 'safety_checker') and pipe.safety_checker is not None:
|
91 |
-
pipe.safety_checker.to("cuda")
|
92 |
-
|
93 |
-
print("๋ชจ๋ธ ๋ก๋ฉ ์๋ฃ")
|
94 |
-
return True
|
95 |
-
except Exception as e:
|
96 |
-
print(f"๋ชจ๋ธ ๋ก๋ฉ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}")
|
97 |
-
traceback.print_exc()
|
98 |
-
return False
|
99 |
|
|
|
100 |
css = """
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
}
|
106 |
-
.
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
}
|
111 |
-
.
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
}
|
129 |
-
.
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
"""
|
156 |
|
157 |
-
# Create Gradio interface
|
158 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
159 |
-
gr.
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
loading_status = gr.Textbox(
|
177 |
-
value="",
|
178 |
-
label="Status",
|
179 |
-
visible=False,
|
180 |
-
elem_classes=["loading-indicator"]
|
181 |
-
)
|
182 |
-
|
183 |
-
with gr.Row():
|
184 |
-
with gr.Column(scale=3):
|
185 |
-
prompt = gr.Textbox(
|
186 |
-
label="Image Description",
|
187 |
-
placeholder="Describe the image you want to create...",
|
188 |
-
lines=3
|
189 |
-
)
|
190 |
-
|
191 |
-
with gr.Accordion("Advanced Settings", open=False):
|
192 |
-
with gr.Row():
|
193 |
-
height = gr.Slider(
|
194 |
-
label="Height",
|
195 |
-
minimum=256,
|
196 |
-
maximum=1152,
|
197 |
-
step=64,
|
198 |
-
value=1024
|
199 |
-
)
|
200 |
-
width = gr.Slider(
|
201 |
-
label="Width",
|
202 |
-
minimum=256,
|
203 |
-
maximum=1152,
|
204 |
-
step=64,
|
205 |
-
value=1024
|
206 |
)
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
<
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐จ Abstract Art</p>
|
257 |
-
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
|
258 |
-
</div>
|
259 |
-
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
|
260 |
-
<p style="font-weight: bold; margin: 0 0 0.5em 0;">๐ฟ Macro Nature</p>
|
261 |
-
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
|
262 |
-
</div>
|
263 |
-
</div>
|
264 |
-
""")
|
265 |
|
266 |
-
with gr.Column(scale=4, elem_classes=["fixed-width"]):
|
267 |
-
output = gr.Image(
|
268 |
-
label="Generated Image",
|
269 |
-
elem_id="output-image",
|
270 |
-
elem_classes=["output-image", "fixed-width"]
|
271 |
-
)
|
272 |
-
|
273 |
@spaces.GPU
|
274 |
def process_image(height, width, steps, scales, prompt, seed):
|
275 |
global pipe
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
try:
|
287 |
-
# ๋ฉ๋ชจ๋ฆฌ ํ๋ณด๋ฅผ ์ํ ๊ฐ๋น์ง ์ฝ๋ ์
|
288 |
-
gc.collect()
|
289 |
-
torch.cuda.empty_cache()
|
290 |
-
|
291 |
-
# ์๋ ๊ฐ ํ์ธ ๋ฐ ๋ณด์
|
292 |
-
if seed is None or not isinstance(seed, (int, float)):
|
293 |
-
seed = get_random_seed()
|
294 |
-
else:
|
295 |
-
seed = int(seed) # ํ์
๋ณํ ์์ ํ๊ฒ ์ฒ๋ฆฌ
|
296 |
-
|
297 |
-
# ๋์ด์ ๋๋น๋ฅผ 64์ ๋ฐฐ์๋ก ์กฐ์ (FLUX ๋ชจ๋ธ ์๊ตฌ์ฌํญ)
|
298 |
-
height = (int(height) // 64) * 64
|
299 |
-
width = (int(width) // 64) * 64
|
300 |
-
|
301 |
-
# ์์ ์ฅ์น - ์ต๋๊ฐ ์ ํ
|
302 |
-
steps = min(int(steps), 25)
|
303 |
-
scales = max(min(float(scales), 5.0), 0.0)
|
304 |
-
|
305 |
-
# ์ด๋ฏธ์ง ์์ฑ
|
306 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
307 |
-
# ์ค์: generator ์ค์ ์ device๋ฅผ ๋ช
์์ ์ผ๋ก ์ง์
|
308 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
309 |
-
|
310 |
-
# ๋ชจ๋ ํ
์๊ฐ ๊ฐ์ ๋๋ฐ์ด์ค์ ์๋์ง ํ์ธ
|
311 |
-
for name, module in pipe.components.items():
|
312 |
-
if hasattr(module, 'device') and module.device.type != "cuda":
|
313 |
-
module.to("cuda")
|
314 |
-
|
315 |
-
# ์ด๋ฏธ์ง ์์ฑ - ๋ชจ๋ ๋งค๊ฐ๋ณ์์ device๋ฅผ ๋ช
์์ ์ง์
|
316 |
-
generated_image = pipe(
|
317 |
-
prompt=[filtered_prompt],
|
318 |
-
generator=generator,
|
319 |
-
num_inference_steps=steps,
|
320 |
-
guidance_scale=scales,
|
321 |
-
height=height,
|
322 |
-
width=width,
|
323 |
-
max_sequence_length=256,
|
324 |
-
device="cuda" # ๋ช
์์ device ์ง์
|
325 |
-
).images[0]
|
326 |
-
|
327 |
-
return generated_image, "", False, "", False
|
328 |
-
|
329 |
-
except Exception as e:
|
330 |
-
error_msg = f"์ด๋ฏธ์ง ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
331 |
-
print(error_msg)
|
332 |
-
traceback.print_exc()
|
333 |
-
|
334 |
-
# ์ค๋ฅ ํ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
335 |
-
gc.collect()
|
336 |
-
torch.cuda.empty_cache()
|
337 |
-
|
338 |
-
return None, "", False, error_msg, True
|
339 |
-
|
340 |
-
def update_seed():
|
341 |
-
return get_random_seed()
|
342 |
-
|
343 |
-
# ์ด๋ฏธ์ง ์์ฑ ์ค๋น ํจ์
|
344 |
-
def prepare_generation(height, width, steps, scales, prompt, seed):
|
345 |
-
global pipe
|
346 |
-
|
347 |
-
# ๋ชจ๋ธ์ด ์์ง ๋ก๋๋์ง ์์๋ค๋ฉด ๋ก๋
|
348 |
-
if pipe is None:
|
349 |
-
# ๋ก๋ฉ ์ํ ํ์
|
350 |
-
loading_message = "๋ชจ๋ธ์ ๋ก๋ฉ ์ค์
๋๋ค... ์ฒ์ ์คํ ์ ์๊ฐ์ด ์์๋ ์ ์์ต๋๋ค."
|
351 |
-
|
352 |
-
is_loaded = initialize_model()
|
353 |
-
if not is_loaded:
|
354 |
-
return None, "", False, "๋ชจ๋ธ ๋ก๋ฉ์ ์คํจํ์ต๋๋ค. ํ์ด์ง๋ฅผ ์๋ก๊ณ ์นจํ๊ณ ๋ค์ ์๋ํด ์ฃผ์ธ์.", True
|
355 |
-
|
356 |
-
# ์์ฑ ์ํ ํ์
|
357 |
-
loading_message = "์ด๋ฏธ์ง๋ฅผ ์์ฑ ์ค์
๋๋ค..."
|
358 |
-
|
359 |
-
# ์์ฑ ํ๋ก์ธ์ค ์์
|
360 |
-
return process_image(height, width, steps, scales, prompt, seed)
|
361 |
|
362 |
-
# ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ์ฐ๊ฒฐ
|
363 |
generate_btn.click(
|
364 |
-
|
365 |
inputs=[height, width, steps, scales, prompt, seed],
|
366 |
-
outputs=
|
367 |
-
)
|
368 |
-
|
369 |
-
randomize_seed.click(
|
370 |
-
fn=update_seed,
|
371 |
-
outputs=[seed]
|
372 |
)
|
373 |
|
374 |
if __name__ == "__main__":
|
375 |
-
|
376 |
-
demo.queue(max_size=10).launch()
|
|
|
2 |
import argparse
|
3 |
import os
|
4 |
import time
|
|
|
5 |
from os import path
|
|
|
|
|
|
|
6 |
from safetensors.torch import load_file
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
|
|
10 |
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
11 |
os.environ["HF_HUB_CACHE"] = cache_path
|
12 |
os.environ["HF_HOME"] = cache_path
|
13 |
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
from diffusers import FluxPipeline
|
17 |
|
18 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class timer:
|
21 |
def __init__(self, method_name="timed process"):
|
|
|
27 |
end = time.time()
|
28 |
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
29 |
|
30 |
+
if not path.exists(cache_path):
|
31 |
+
os.makedirs(cache_path, exist_ok=True)
|
32 |
|
33 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
34 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
35 |
+
pipe.fuse_lora(lora_scale=0.125)
|
36 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
37 |
+
|
38 |
+
# Define example prompts
|
39 |
+
example_prompts = [
|
40 |
+
"A cyberpunk cityscape at night with neon lights reflecting in puddles, towering skyscrapers and flying cars",
|
41 |
+
"An ethereal fairy with translucent iridescent wings standing in an enchanted forest with glowing mushrooms and floating light particles",
|
42 |
+
"A majestic dragon soaring through stormy clouds above jagged mountain peaks as lightning strikes in the background",
|
43 |
+
"A futuristic space station orbiting a vibrant nebula with multiple colorful ringed planets visible through a massive observation window",
|
44 |
+
"An underwater scene of an ancient lost city with ornate temples and statues covered in bioluminescent coral and swimming sea creatures"
|
45 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Custom CSS for neon theme
|
48 |
css = """
|
49 |
+
.neon-container {
|
50 |
+
background: linear-gradient(to right, #000428, #004e92);
|
51 |
+
border-radius: 16px;
|
52 |
+
box-shadow: 0 0 15px #00f3ff, 0 0 25px #00f3ff;
|
53 |
+
}
|
54 |
+
.neon-title {
|
55 |
+
text-shadow: 0 0 5px #fff, 0 0 10px #fff, 0 0 15px #0073e6, 0 0 20px #0073e6, 0 0 25px #0073e6;
|
56 |
+
color: #ffffff;
|
57 |
+
font-weight: bold !important;
|
58 |
+
}
|
59 |
+
.neon-text {
|
60 |
+
color: #00ff9d;
|
61 |
+
text-shadow: 0 0 5px #00ff9d;
|
62 |
+
}
|
63 |
+
.neon-button {
|
64 |
+
box-shadow: 0 0 5px #ff00dd, 0 0 10px #ff00dd !important;
|
65 |
+
background: linear-gradient(90deg, #ff00dd, #8b00ff) !important;
|
66 |
+
border: none !important;
|
67 |
+
color: white !important;
|
68 |
+
font-weight: bold !important;
|
69 |
+
}
|
70 |
+
.neon-button:hover {
|
71 |
+
box-shadow: 0 0 10px #ff00dd, 0 0 20px #ff00dd !important;
|
72 |
+
}
|
73 |
+
.neon-input {
|
74 |
+
border: 1px solid #00f3ff !important;
|
75 |
+
box-shadow: 0 0 5px #00f3ff !important;
|
76 |
+
}
|
77 |
+
.neon-slider > div {
|
78 |
+
background: linear-gradient(90deg, #00ff9d, #00f3ff) !important;
|
79 |
+
}
|
80 |
+
.neon-slider > div > div {
|
81 |
+
background: #ff00dd !important;
|
82 |
+
box-shadow: 0 0 5px #ff00dd !important;
|
83 |
+
}
|
84 |
+
.neon-card {
|
85 |
+
background-color: rgba(0, 0, 0, 0.7) !important;
|
86 |
+
border: 1px solid #00f3ff !important;
|
87 |
+
box-shadow: 0 0 10px #00f3ff !important;
|
88 |
+
padding: 16px !important;
|
89 |
+
border-radius: 8px !important;
|
90 |
+
}
|
91 |
+
.neon-example {
|
92 |
+
background: rgba(0, 0, 0, 0.5) !important;
|
93 |
+
border: 1px solid #00ff9d !important;
|
94 |
+
border-radius: 8px !important;
|
95 |
+
padding: 8px !important;
|
96 |
+
color: #00ff9d !important;
|
97 |
+
box-shadow: 0 0 5px #00ff9d !important;
|
98 |
+
margin: 4px !important;
|
99 |
+
cursor: pointer !important;
|
100 |
+
}
|
101 |
+
.neon-example:hover {
|
102 |
+
box-shadow: 0 0 10px #00ff9d, 0 0 15px #00ff9d !important;
|
103 |
+
background: rgba(0, 255, 157, 0.2) !important;
|
104 |
+
}
|
105 |
"""
|
106 |
|
|
|
107 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
108 |
+
with gr.Blocks(elem_classes=["neon-container"]):
|
109 |
+
gr.Markdown(
|
110 |
+
"""
|
111 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
112 |
+
<h1 style="font-size: 3rem; font-weight: 700; margin-bottom: 1rem; display: contents;" class="neon-title">FLUX: Fast & Furious</h1>
|
113 |
+
<p style="font-size: 1.2rem; margin-bottom: 1.5rem;" class="neon-text">AutoML team from ByteDance</p>
|
114 |
+
</div>
|
115 |
+
"""
|
116 |
+
)
|
117 |
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column(scale=3, elem_classes=["neon-card"]):
|
120 |
+
with gr.Group():
|
121 |
+
prompt = gr.Textbox(
|
122 |
+
label="Your Image Description",
|
123 |
+
placeholder="E.g., A serene landscape with mountains and a lake at sunset",
|
124 |
+
lines=3,
|
125 |
+
elem_classes=["neon-input"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
127 |
+
|
128 |
+
# Examples section
|
129 |
+
gr.Markdown('<p class="neon-text">Click on any example to use it:</p>')
|
130 |
+
with gr.Row():
|
131 |
+
example_boxes = [gr.Button(ex[:40] + "...", elem_classes=["neon-example"]) for ex in example_prompts]
|
132 |
+
|
133 |
+
# Connect example buttons to the prompt textbox
|
134 |
+
for i, example_btn in enumerate(example_boxes):
|
135 |
+
example_btn.click(
|
136 |
+
fn=lambda x=example_prompts[i]: x,
|
137 |
+
outputs=prompt
|
138 |
+
)
|
139 |
+
|
140 |
+
with gr.Accordion("Advanced Settings", open=False):
|
141 |
+
with gr.Group():
|
142 |
+
with gr.Row():
|
143 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024,
|
144 |
+
elem_classes=["neon-slider"])
|
145 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024,
|
146 |
+
elem_classes=["neon-slider"])
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8,
|
150 |
+
elem_classes=["neon-slider"])
|
151 |
+
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5,
|
152 |
+
elem_classes=["neon-slider"])
|
153 |
+
|
154 |
+
seed = gr.Number(label="Seed (for reproducibility)", value=3413, precision=0,
|
155 |
+
elem_classes=["neon-input"])
|
156 |
+
|
157 |
+
generate_btn = gr.Button("Generate Image", variant="primary", scale=1, elem_classes=["neon-button"])
|
158 |
+
|
159 |
+
with gr.Column(scale=4, elem_classes=["neon-card"]):
|
160 |
+
output = gr.Image(label="Your Generated Image")
|
161 |
+
|
162 |
+
gr.Markdown(
|
163 |
+
"""
|
164 |
+
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px;" class="neon-card">
|
165 |
+
<h2 style="font-size: 1.5rem; margin-bottom: 1rem;" class="neon-text">How to Use</h2>
|
166 |
+
<ol style="padding-left: 1.5rem; color: #00f3ff;">
|
167 |
+
<li>Enter a detailed description of the image you want to create.</li>
|
168 |
+
<li>Or click one of our exciting example prompts above!</li>
|
169 |
+
<li>Adjust advanced settings if desired (tap to expand).</li>
|
170 |
+
<li>Tap "Generate Image" and wait for your creation!</li>
|
171 |
+
</ol>
|
172 |
+
<p style="margin-top: 1rem; font-style: italic; color: #ff00dd;">Tip: Be specific in your description for best results!</p>
|
173 |
+
</div>
|
174 |
+
"""
|
175 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
@spaces.GPU
|
178 |
def process_image(height, width, steps, scales, prompt, seed):
|
179 |
global pipe
|
180 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
181 |
+
return pipe(
|
182 |
+
prompt=[prompt],
|
183 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
184 |
+
num_inference_steps=int(steps),
|
185 |
+
guidance_scale=float(scales),
|
186 |
+
height=int(height),
|
187 |
+
width=int(width),
|
188 |
+
max_sequence_length=256
|
189 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
|
|
191 |
generate_btn.click(
|
192 |
+
process_image,
|
193 |
inputs=[height, width, steps, scales, prompt, seed],
|
194 |
+
outputs=output
|
|
|
|
|
|
|
|
|
|
|
195 |
)
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
+
demo.launch()
|
|