lixiang46
commited on
Commit
·
e9f3ef9
1
Parent(s):
78697e3
split
Browse files
app.py
CHANGED
|
@@ -75,9 +75,8 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 75 |
MAX_IMAGE_SIZE = 1024
|
| 76 |
|
| 77 |
@spaces.GPU
|
| 78 |
-
def
|
| 79 |
image = None,
|
| 80 |
-
controlnet_type = "Depth",
|
| 81 |
negative_prompt = "",
|
| 82 |
seed = 0,
|
| 83 |
randomize_seed = False,
|
|
@@ -91,14 +90,8 @@ def infer(prompt,
|
|
| 91 |
seed = random.randint(0, MAX_SEED)
|
| 92 |
generator = torch.Generator().manual_seed(seed)
|
| 93 |
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
|
| 97 |
-
elif controlnet_type == "Canny":
|
| 98 |
-
pipe = pipe_canny.to("cuda")
|
| 99 |
-
condi_img = process_canny_condition(np.array(init_image))
|
| 100 |
-
else:
|
| 101 |
-
return None
|
| 102 |
image = pipe(
|
| 103 |
prompt= prompt ,
|
| 104 |
image = init_image,
|
|
@@ -114,8 +107,38 @@ def infer(prompt,
|
|
| 114 |
).images[0]
|
| 115 |
return [condi_img, image]
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
canny_examples = [
|
| 121 |
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
|
@@ -228,7 +251,7 @@ with gr.Blocks(css=css) as Kolors:
|
|
| 228 |
|
| 229 |
with gr.Row():
|
| 230 |
gr.Examples(
|
| 231 |
-
fn =
|
| 232 |
examples = canny_examples,
|
| 233 |
inputs = [prompt, image],
|
| 234 |
outputs = [result],
|
|
@@ -236,29 +259,22 @@ with gr.Blocks(css=css) as Kolors:
|
|
| 236 |
)
|
| 237 |
with gr.Row():
|
| 238 |
gr.Examples(
|
| 239 |
-
fn =
|
| 240 |
examples = depth_examples,
|
| 241 |
inputs = [prompt, image],
|
| 242 |
outputs = [result],
|
| 243 |
label = "Depth"
|
| 244 |
)
|
| 245 |
|
|
|
|
| 246 |
canny_button.click(
|
| 247 |
-
fn =
|
| 248 |
-
inputs = "Canny",
|
| 249 |
-
outputs = controlnet_type
|
| 250 |
-
).then(
|
| 251 |
-
fn = infer,
|
| 252 |
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
| 253 |
outputs = [result]
|
| 254 |
)
|
| 255 |
|
| 256 |
depth_button.click(
|
| 257 |
-
fn =
|
| 258 |
-
inputs = "Depth",
|
| 259 |
-
outputs = controlnet_type
|
| 260 |
-
).then(
|
| 261 |
-
fn = infer,
|
| 262 |
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
| 263 |
outputs = [result]
|
| 264 |
)
|
|
|
|
| 75 |
MAX_IMAGE_SIZE = 1024
|
| 76 |
|
| 77 |
@spaces.GPU
|
| 78 |
+
def infer_depth(prompt,
|
| 79 |
image = None,
|
|
|
|
| 80 |
negative_prompt = "",
|
| 81 |
seed = 0,
|
| 82 |
randomize_seed = False,
|
|
|
|
| 90 |
seed = random.randint(0, MAX_SEED)
|
| 91 |
generator = torch.Generator().manual_seed(seed)
|
| 92 |
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 93 |
+
pipe = pipe_depth.to("cuda")
|
| 94 |
+
condi_img = process_depth_condition_midas( np.array(init_image), MAX_IMAGE_SIZE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
image = pipe(
|
| 96 |
prompt= prompt ,
|
| 97 |
image = init_image,
|
|
|
|
| 107 |
).images[0]
|
| 108 |
return [condi_img, image]
|
| 109 |
|
| 110 |
+
@spaces.GPU
|
| 111 |
+
def infer_canny(prompt,
|
| 112 |
+
image = None,
|
| 113 |
+
negative_prompt = "",
|
| 114 |
+
seed = 0,
|
| 115 |
+
randomize_seed = False,
|
| 116 |
+
guidance_scale = 6.0,
|
| 117 |
+
num_inference_steps = 50,
|
| 118 |
+
controlnet_conditioning_scale = 0.7,
|
| 119 |
+
control_guidance_end = 0.9,
|
| 120 |
+
strength = 1.0
|
| 121 |
+
):
|
| 122 |
+
if randomize_seed:
|
| 123 |
+
seed = random.randint(0, MAX_SEED)
|
| 124 |
+
generator = torch.Generator().manual_seed(seed)
|
| 125 |
+
init_image = resize_image(image, MAX_IMAGE_SIZE)
|
| 126 |
+
pipe = pipe_canny.to("cuda")
|
| 127 |
+
condi_img = process_canny_condition(np.array(init_image))
|
| 128 |
+
image = pipe(
|
| 129 |
+
prompt= prompt ,
|
| 130 |
+
image = init_image,
|
| 131 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale,
|
| 132 |
+
control_guidance_end = control_guidance_end,
|
| 133 |
+
strength= strength ,
|
| 134 |
+
control_image = condi_img,
|
| 135 |
+
negative_prompt= negative_prompt ,
|
| 136 |
+
num_inference_steps= num_inference_steps,
|
| 137 |
+
guidance_scale= guidance_scale,
|
| 138 |
+
num_images_per_prompt=1,
|
| 139 |
+
generator=generator,
|
| 140 |
+
).images[0]
|
| 141 |
+
return [condi_img, image]
|
| 142 |
|
| 143 |
canny_examples = [
|
| 144 |
["一个漂亮的女孩,高品质,超清晰,色彩鲜艳,超高分辨率,最佳品质,8k,高清,4K",
|
|
|
|
| 251 |
|
| 252 |
with gr.Row():
|
| 253 |
gr.Examples(
|
| 254 |
+
fn = infer_canny,
|
| 255 |
examples = canny_examples,
|
| 256 |
inputs = [prompt, image],
|
| 257 |
outputs = [result],
|
|
|
|
| 259 |
)
|
| 260 |
with gr.Row():
|
| 261 |
gr.Examples(
|
| 262 |
+
fn = infer_depth,
|
| 263 |
examples = depth_examples,
|
| 264 |
inputs = [prompt, image],
|
| 265 |
outputs = [result],
|
| 266 |
label = "Depth"
|
| 267 |
)
|
| 268 |
|
| 269 |
+
|
| 270 |
canny_button.click(
|
| 271 |
+
fn = infer_canny,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
| 273 |
outputs = [result]
|
| 274 |
)
|
| 275 |
|
| 276 |
depth_button.click(
|
| 277 |
+
fn = infer_depth,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
inputs = [prompt, image, controlnet_type, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength],
|
| 279 |
outputs = [result]
|
| 280 |
)
|