arxivgpt kim
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import tempfile
|
|
7 |
import time
|
8 |
import gradio as gr
|
9 |
|
10 |
-
|
11 |
class Predictor:
|
12 |
def __init__(self):
|
13 |
self.setup()
|
@@ -25,7 +24,6 @@ class Predictor:
|
|
25 |
)
|
26 |
os.chdir('..')
|
27 |
|
28 |
-
"""Load the model into memory to make running multiple predictions efficient"""
|
29 |
self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
|
30 |
providers=onnxruntime.get_available_providers())
|
31 |
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
|
@@ -42,15 +40,10 @@ class Predictor:
|
|
42 |
return None
|
43 |
|
44 |
def predict(self, input_image, swap_image):
|
45 |
-
"""Run a single prediction on the model"""
|
46 |
try:
|
47 |
frame = cv2.imread(input_image.name)
|
48 |
face = self.get_face(frame)
|
49 |
source_face = self.get_face(cv2.imread(swap_image.name))
|
50 |
-
try:
|
51 |
-
print(frame.shape, face.shape, source_face.shape)
|
52 |
-
except:
|
53 |
-
print("printing shapes failed.")
|
54 |
result = self.face_swapper.get(frame, face, source_face, paste_back=True)
|
55 |
|
56 |
_, _, result = self.face_enhancer.enhance(
|
@@ -64,7 +57,6 @@ class Predictor:
|
|
64 |
print(f"{e}")
|
65 |
return None
|
66 |
|
67 |
-
|
68 |
# Instantiate the Predictor class
|
69 |
predictor = Predictor()
|
70 |
|
@@ -75,15 +67,16 @@ footer {
|
|
75 |
"""
|
76 |
|
77 |
# Create Gradio Interface
|
78 |
-
iface = gr.Interface(
|
79 |
fn=predictor.predict,
|
80 |
inputs=[
|
81 |
gr.inputs.Image(type="file", label="Target Image"),
|
82 |
gr.inputs.Image(type="file", label="Swap Image")
|
83 |
],
|
84 |
outputs=gr.outputs.Image(type="file", label="Result"),
|
85 |
-
examples=[["input.jpg", "swap img.jpg"]]
|
86 |
-
|
|
|
87 |
|
88 |
# Launch the Gradio Interface
|
89 |
iface.launch()
|
|
|
7 |
import time
|
8 |
import gradio as gr
|
9 |
|
|
|
10 |
class Predictor:
|
11 |
def __init__(self):
|
12 |
self.setup()
|
|
|
24 |
)
|
25 |
os.chdir('..')
|
26 |
|
|
|
27 |
self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
|
28 |
providers=onnxruntime.get_available_providers())
|
29 |
self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
|
|
|
40 |
return None
|
41 |
|
42 |
def predict(self, input_image, swap_image):
|
|
|
43 |
try:
|
44 |
frame = cv2.imread(input_image.name)
|
45 |
face = self.get_face(frame)
|
46 |
source_face = self.get_face(cv2.imread(swap_image.name))
|
|
|
|
|
|
|
|
|
47 |
result = self.face_swapper.get(frame, face, source_face, paste_back=True)
|
48 |
|
49 |
_, _, result = self.face_enhancer.enhance(
|
|
|
57 |
print(f"{e}")
|
58 |
return None
|
59 |
|
|
|
60 |
# Instantiate the Predictor class
|
61 |
predictor = Predictor()
|
62 |
|
|
|
67 |
"""
|
68 |
|
69 |
# Create Gradio Interface
|
70 |
+
iface = gr.Interface(
|
71 |
fn=predictor.predict,
|
72 |
inputs=[
|
73 |
gr.inputs.Image(type="file", label="Target Image"),
|
74 |
gr.inputs.Image(type="file", label="Swap Image")
|
75 |
],
|
76 |
outputs=gr.outputs.Image(type="file", label="Result"),
|
77 |
+
examples=[["input.jpg", "swap img.jpg"]],
|
78 |
+
css=css
|
79 |
+
)
|
80 |
|
81 |
# Launch the Gradio Interface
|
82 |
iface.launch()
|