arxivgpt kim commited on
Commit
4be8f6f
·
verified ·
1 Parent(s): 24cde4e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -11
app.py CHANGED
@@ -7,7 +7,6 @@ import tempfile
7
  import time
8
  import gradio as gr
9
 
10
-
11
  class Predictor:
12
  def __init__(self):
13
  self.setup()
@@ -25,7 +24,6 @@ class Predictor:
25
  )
26
  os.chdir('..')
27
 
28
- """Load the model into memory to make running multiple predictions efficient"""
29
  self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
30
  providers=onnxruntime.get_available_providers())
31
  self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
@@ -42,15 +40,10 @@ class Predictor:
42
  return None
43
 
44
  def predict(self, input_image, swap_image):
45
- """Run a single prediction on the model"""
46
  try:
47
  frame = cv2.imread(input_image.name)
48
  face = self.get_face(frame)
49
  source_face = self.get_face(cv2.imread(swap_image.name))
50
- try:
51
- print(frame.shape, face.shape, source_face.shape)
52
- except:
53
- print("printing shapes failed.")
54
  result = self.face_swapper.get(frame, face, source_face, paste_back=True)
55
 
56
  _, _, result = self.face_enhancer.enhance(
@@ -64,7 +57,6 @@ class Predictor:
64
  print(f"{e}")
65
  return None
66
 
67
-
68
  # Instantiate the Predictor class
69
  predictor = Predictor()
70
 
@@ -75,15 +67,16 @@ footer {
75
  """
76
 
77
  # Create Gradio Interface
78
- iface = gr.Interface(css=css)
79
  fn=predictor.predict,
80
  inputs=[
81
  gr.inputs.Image(type="file", label="Target Image"),
82
  gr.inputs.Image(type="file", label="Swap Image")
83
  ],
84
  outputs=gr.outputs.Image(type="file", label="Result"),
85
- examples=[["input.jpg", "swap img.jpg"]])
86
-
 
87
 
88
  # Launch the Gradio Interface
89
  iface.launch()
 
7
  import time
8
  import gradio as gr
9
 
 
10
  class Predictor:
11
  def __init__(self):
12
  self.setup()
 
24
  )
25
  os.chdir('..')
26
 
 
27
  self.face_swapper = insightface.model_zoo.get_model('models/inswapper_128.onnx',
28
  providers=onnxruntime.get_available_providers())
29
  self.face_enhancer = gfpgan.GFPGANer(model_path='models/GFPGANv1.4.pth', upscale=1)
 
40
  return None
41
 
42
  def predict(self, input_image, swap_image):
 
43
  try:
44
  frame = cv2.imread(input_image.name)
45
  face = self.get_face(frame)
46
  source_face = self.get_face(cv2.imread(swap_image.name))
 
 
 
 
47
  result = self.face_swapper.get(frame, face, source_face, paste_back=True)
48
 
49
  _, _, result = self.face_enhancer.enhance(
 
57
  print(f"{e}")
58
  return None
59
 
 
60
  # Instantiate the Predictor class
61
  predictor = Predictor()
62
 
 
67
  """
68
 
69
  # Create Gradio Interface
70
+ iface = gr.Interface(
71
  fn=predictor.predict,
72
  inputs=[
73
  gr.inputs.Image(type="file", label="Target Image"),
74
  gr.inputs.Image(type="file", label="Swap Image")
75
  ],
76
  outputs=gr.outputs.Image(type="file", label="Result"),
77
+ examples=[["input.jpg", "swap img.jpg"]],
78
+ css=css
79
+ )
80
 
81
  # Launch the Gradio Interface
82
  iface.launch()