|
import os |
|
import pathlib |
|
import tempfile |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import av |
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from fastrtc import AdditionalOutputs, ReplyOnPause, WebRTC, WebRTCData, get_hf_turn_credentials |
|
from gradio.processing_utils import save_audio_to_cache |
|
from gradio.utils import get_upload_folder |
|
from transformers import AutoModelForImageTextToText, AutoProcessor |
|
from transformers.generation.streamers import TextIteratorStreamer |
|
|
|
model_id = "google/gemma-3n-E4B-it" |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
model = AutoModelForImageTextToText.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) |
|
|
|
IMAGE_FILE_TYPES = (".jpg", ".jpeg", ".png", ".webp") |
|
VIDEO_FILE_TYPES = (".mp4", ".mov", ".webm") |
|
AUDIO_FILE_TYPES = (".mp3", ".wav") |
|
|
|
GRADIO_TEMP_DIR = get_upload_folder() |
|
|
|
TARGET_FPS = int(os.getenv("TARGET_FPS", "3")) |
|
MAX_FRAMES = int(os.getenv("MAX_FRAMES", "30")) |
|
MAX_INPUT_TOKENS = int(os.getenv("MAX_INPUT_TOKENS", "10_000")) |
|
|
|
|
|
def get_file_type(path: str) -> str: |
|
if path.endswith(IMAGE_FILE_TYPES): |
|
return "image" |
|
if path.endswith(VIDEO_FILE_TYPES): |
|
return "video" |
|
if path.endswith(AUDIO_FILE_TYPES): |
|
return "audio" |
|
error_message = f"Unsupported file type: {path}" |
|
raise ValueError(error_message) |
|
|
|
|
|
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: |
|
video_count = 0 |
|
non_video_count = 0 |
|
for path in paths: |
|
if path.endswith(VIDEO_FILE_TYPES): |
|
video_count += 1 |
|
else: |
|
non_video_count += 1 |
|
return video_count, non_video_count |
|
|
|
|
|
def validate_media_constraints(message: dict) -> bool: |
|
video_count, non_video_count = count_files_in_new_message(message["files"]) |
|
if video_count > 1: |
|
gr.Warning("Only one video is supported.") |
|
return False |
|
if video_count == 1 and non_video_count > 0: |
|
gr.Warning("Mixing images and videos is not allowed.") |
|
return False |
|
return True |
|
|
|
|
|
def extract_frames_to_tempdir( |
|
video_path: str, |
|
target_fps: float, |
|
max_frames: int | None = None, |
|
parent_dir: str | None = None, |
|
prefix: str = "frames_", |
|
) -> str: |
|
temp_dir = tempfile.mkdtemp(prefix=prefix, dir=parent_dir) |
|
|
|
container = av.open(video_path) |
|
video_stream = container.streams.video[0] |
|
|
|
if video_stream.duration is None or video_stream.time_base is None: |
|
raise ValueError("video_stream is missing duration or time_base") |
|
|
|
time_base = video_stream.time_base |
|
duration = float(video_stream.duration * time_base) |
|
interval = 1.0 / target_fps |
|
|
|
total_frames = int(duration * target_fps) |
|
if max_frames is not None: |
|
total_frames = min(total_frames, max_frames) |
|
|
|
target_times = [i * interval for i in range(total_frames)] |
|
target_index = 0 |
|
|
|
for frame in container.decode(video=0): |
|
if frame.pts is None: |
|
continue |
|
|
|
timestamp = float(frame.pts * time_base) |
|
|
|
if target_index < len(target_times) and abs(timestamp - target_times[target_index]) < (interval / 2): |
|
frame_path = pathlib.Path(temp_dir) / f"frame_{target_index:04d}.jpg" |
|
frame.to_image().save(frame_path) |
|
target_index += 1 |
|
|
|
if max_frames is not None and target_index >= max_frames: |
|
break |
|
|
|
container.close() |
|
return temp_dir |
|
|
|
|
|
def process_new_user_message(message: dict) -> list[dict]: |
|
if not message["files"]: |
|
return [{"type": "text", "text": message["text"]}] |
|
|
|
file_types = [get_file_type(path) for path in message["files"]] |
|
|
|
if len(file_types) == 1 and file_types[0] == "video": |
|
gr.Info(f"Video will be processed at {TARGET_FPS} FPS, max {MAX_FRAMES} frames in this Space.") |
|
|
|
temp_dir = extract_frames_to_tempdir( |
|
message["files"][0], |
|
target_fps=TARGET_FPS, |
|
max_frames=MAX_FRAMES, |
|
parent_dir=GRADIO_TEMP_DIR, |
|
) |
|
paths = sorted(pathlib.Path(temp_dir).glob("*.jpg")) |
|
return [ |
|
{"type": "text", "text": message["text"]}, |
|
*[{"type": "image", "image": path.as_posix()} for path in paths], |
|
] |
|
|
|
return [ |
|
{"type": "text", "text": message["text"]}, |
|
*[{"type": file_type, file_type: path} for path, file_type in zip(message["files"], file_types, strict=True)], |
|
] |
|
|
|
|
|
def process_history(history: list[dict]) -> list[dict]: |
|
messages = [] |
|
current_user_content: list[dict] = [] |
|
for item in history: |
|
if item["role"] == "assistant": |
|
if current_user_content: |
|
messages.append({"role": "user", "content": current_user_content}) |
|
current_user_content = [] |
|
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) |
|
else: |
|
content = item["content"] |
|
if isinstance(content, str): |
|
current_user_content.append({"type": "text", "text": content}) |
|
else: |
|
filepath = content[0] |
|
file_type = get_file_type(filepath) |
|
current_user_content.append({"type": file_type, file_type: filepath}) |
|
return messages |
|
|
|
|
|
@torch.inference_mode() |
|
def _generate(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]: |
|
if not validate_media_constraints(message): |
|
yield "" |
|
return |
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]}) |
|
messages.extend(process_history(history)) |
|
messages.append({"role": "user", "content": process_new_user_message(message)}) |
|
|
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
) |
|
n_tokens = inputs["input_ids"].shape[1] |
|
if n_tokens > MAX_INPUT_TOKENS: |
|
gr.Warning( |
|
f"Input too long. Max {MAX_INPUT_TOKENS} tokens. Got {n_tokens} tokens. This limit is set to avoid CUDA out-of-memory errors in this Space." |
|
) |
|
yield "" |
|
return |
|
|
|
inputs = inputs.to(device=model.device, dtype=torch.bfloat16) |
|
|
|
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=False, |
|
disable_compile=True, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
output = "" |
|
for delta in streamer: |
|
output += delta |
|
yield output |
|
|
|
|
|
@spaces.GPU(time_limit=120) |
|
def generate(data: WebRTCData, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512, image=None): |
|
files = [] |
|
if data.audio is not None and data.audio[1].size > 0: |
|
files.append(save_audio_to_cache(data.audio[1], data.audio[0], format="mp3", cache_dir=get_upload_folder())) |
|
if image is not None: |
|
files.append(image) |
|
message = { |
|
"text": data.textbox, |
|
"files": files, |
|
} |
|
print("message", message) |
|
history.append({"role": "user", "content": data.textbox}) |
|
print("history", history) |
|
yield AdditionalOutputs(history) |
|
new_message = {"role": "assistant", "content": ""} |
|
for output in _generate(message, history, system_prompt, max_new_tokens): |
|
new_message["content"] = output |
|
yield AdditionalOutputs(history + [new_message]) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot(type="messages") |
|
webrtc = WebRTC( |
|
modality="audio", |
|
mode="send", |
|
variant="textbox", |
|
rtc_configuration=get_hf_turn_credentials, |
|
server_rtc_configuration=get_hf_turn_credentials(ttl=3_600 * 24 * 30), |
|
) |
|
with gr.Accordion(label="Additional Inputs"): |
|
sp = gr.Textbox(label="System Prompt", value="You are a helpful assistant.") |
|
slider = gr.Slider(label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700) |
|
image = gr.Image(type="filepath") |
|
|
|
webrtc.stream( |
|
ReplyOnPause(generate), |
|
inputs=[webrtc, chatbot, sp, slider, image], |
|
outputs=[chatbot], |
|
concurrency_limit=100, |
|
) |
|
webrtc.on_additional_outputs(lambda old, new: new, inputs=[chatbot], outputs=[chatbot], concurrency_limit=100) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(ssr_mode=False) |
|
|