freddyaboulton's picture
Upload folder using huggingface_hub
9503367 verified
raw
history blame
2.01 kB
import json
from pathlib import Path
import cv2
import gradio as gr
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from fastrtc import Stream, get_twilio_turn_credentials
from gradio.utils import get_space
from huggingface_hub import hf_hub_download
from pydantic import BaseModel, Field
try:
from demo.object_detection.inference import YOLOv10
except (ImportError, ModuleNotFoundError):
from inference import YOLOv10
cur_dir = Path(__file__).parent
model_file = hf_hub_download(
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
)
model = YOLOv10(model_file)
def detection(image, conf_threshold=0.3):
image = cv2.resize(image, (model.input_width, model.input_height))
print("conf_threshold", conf_threshold)
new_image = model.detect_objects(image, conf_threshold)
return cv2.resize(new_image, (500, 500))
stream = Stream(
handler=detection,
modality="video",
mode="send-receive",
additional_inputs=[gr.Slider(minimum=0, maximum=1, step=0.01, value=0.3)],
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=2 if get_space() else None,
)
app = FastAPI()
stream.mount(app)
@app.get("/")
async def _():
rtc_config = get_twilio_turn_credentials() if get_space() else None
html_content = open(cur_dir / "index.html").read()
html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
return HTMLResponse(content=html_content)
class InputData(BaseModel):
webrtc_id: str
conf_threshold: float = Field(ge=0, le=1)
@app.post("/input_hook")
async def _(data: InputData):
stream.set_input(data.webrtc_id, data.conf_threshold)
if __name__ == "__main__":
import os
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
stream.fastphone(host="0.0.0.0", port=7860)
else:
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)