perspicacity / app.py
fdaudens's picture
fdaudens HF Staff
Update app.py
a792e21 verified
# app.py
import os
import logging
import asyncio
import nest_asyncio
from datetime import datetime
import uuid
import aiohttp
import gradio as gr
from langfuse.llama_index import LlamaIndexInstrumentor
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
from llama_index.tools.weather import OpenWeatherMapToolSpec
from llama_index.tools.playwright import PlaywrightToolSpec
from llama_index.core.tools import FunctionTool
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.readers.web import RssReader
import subprocess
subprocess.run(["playwright", "install"])
# allow nested loops in Spaces
nest_asyncio.apply()
# --- Llangfuse ---
instrumentor = LlamaIndexInstrumentor(
public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"),
secret_key=os.environ.get("LANGFUSE_SECRET_KEY"),
host=os.environ.get("LANGFUSE_HOST"),
)
instrumentor.start()
# --- Secrets via env vars ---
HF_TOKEN = os.getenv("HF_TOKEN")
# OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- LLMs ---
llm = HuggingFaceInferenceAPI(
model_name="Qwen/Qwen2.5-Coder-32B-Instruct",
token=HF_TOKEN,
task="conversational",
parameters={
"max_new_tokens": 2048,
}
)
memory = ChatMemoryBuffer.from_defaults(token_limit=8192)
today_str = datetime.now().strftime("%B %d, %Y")
ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex)
# # OpenAI for pure function-calling
# openai_llm = OpenAI(
# model="gpt-4o",
# api_key=OPENAI_API_KEY,
# temperature=0.0,
# streaming=False,
# )
# --- Tools Setup ---
# DuckDuckGo
duck_spec = DuckDuckGoSearchToolSpec()
search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search)
# Weather
openweather_api_key=OPENWEATHERMAP_KEY
weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key)
weather_tool = FunctionTool.from_defaults(
weather_tool_spec.weather_at_location,
name="current_weather",
description="Get the current weather at a specific location (city, country)."
)
forecast_tool = FunctionTool.from_defaults(
weather_tool_spec.forecast_tommorrow_at_location,
name="weather_forecast",
description="Get tomorrow's weather forecast for a specific location (city, country)."
)
# Playwright (synchronous start)
async def _start_browser():
return await PlaywrightToolSpec.create_async_playwright_browser(headless=True)
browser = asyncio.get_event_loop().run_until_complete(_start_browser())
playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser)
navigate_tool = FunctionTool.from_defaults(
playwright_tool_spec.navigate_to,
name="web_navigate",
description="Navigate to a specific URL."
)
extract_text_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_text,
name="web_extract_text",
description="Extract all text from the current page."
)
extract_links_tool = FunctionTool.from_defaults(
playwright_tool_spec.extract_hyperlinks,
name="web_extract_links",
description="Extract all hyperlinks from the current page."
)
# Google News RSS
def fetch_google_news_rss():
docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"])
return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs]
google_rss_tool = FunctionTool.from_defaults(
fn=fetch_google_news_rss,
name="fetch_google_news_rss",
description="Fetch latest headlines and URLs from Google News RSS."
)
# Serper
async def fetch_serper_news(query: str):
if not serper_api_key:
raise ValueError("Missing SERPER_API_KEY environment variable")
url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad"
headers = {"X-API-KEY": serper_api_key, "Content-Type": "application/json"}
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers) as resp:
resp.raise_for_status()
return await resp.json()
serper_news_tool = FunctionTool.from_defaults(
fetch_serper_news,
name="fetch_news_from_serper",
description="Fetch news articles on a given topic via the Serper API."
)
# Create the agent workflow
tools = [
search_tool,
navigate_tool,
extract_text_tool,
extract_links_tool,
weather_tool,
forecast_tool,
google_rss_tool,
serper_news_tool,
]
web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm)
ctx = Context(web_agent)
# Async helper to run agent queries
def run_query_sync(query: str):
"""Helper to run async agent.run in sync context."""
return asyncio.get_event_loop().run_until_complete(
web_agent.run(query, ctx=ctx)
)
async def run_query(query: str):
trace_id = f"agent-run-{uuid.uuid4().hex}"
try:
with instrumentor.observe(
trace_id=trace_id,
session_id="web-agent-session",
user_id=ANON_USER_ID,
):
return await web_agent.run(query, ctx=ctx)
finally:
instrumentor.flush()
# Gradio interface function
async def gradio_query(user_input, chat_history=None):
history = chat_history or []
history.append({"role": "user", "content": user_input})
result = await run_query(user_input)
text = result.response if isinstance(result.response, str) else str(result.response)
history.append({"role": "assistant", "content": text})
return history, history
# Build and launch Gradio app
grb = gr.Blocks()
with grb:
gr.Markdown("## Perspicacity")
gr.Markdown(
"This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions — all powered by a team of tiny AI agents working behind the scenes.\n\n"
"🧪 Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) — it's just a demo to show what agents can do. \n"
"🙌 Got ideas or improvements? PRs welcome! \n\n"
"👉 _Try asking “What’s the weather in Montreal?” or “What’s in the news today?”_"
)
chatbot = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Ask me anything...", show_label=False)
txt.submit(
gradio_query,
inputs=[txt, chatbot],
outputs=[chatbot, chatbot] # first for display, second for state
)
gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot])
if __name__ == "__main__":
grb.launch()