# app.py import os import logging import asyncio import nest_asyncio from datetime import datetime import uuid import aiohttp import gradio as gr from langfuse.llama_index import LlamaIndexInstrumentor from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec from llama_index.tools.weather import OpenWeatherMapToolSpec from llama_index.tools.playwright import PlaywrightToolSpec from llama_index.core.tools import FunctionTool from llama_index.core.agent.workflow import AgentWorkflow from llama_index.core.workflow import Context from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI from llama_index.core.memory import ChatMemoryBuffer from llama_index.readers.web import RssReader import subprocess subprocess.run(["playwright", "install"]) # allow nested loops in Spaces nest_asyncio.apply() # --- Llangfuse --- instrumentor = LlamaIndexInstrumentor( public_key=os.environ.get("LANGFUSE_PUBLIC_KEY"), secret_key=os.environ.get("LANGFUSE_SECRET_KEY"), host=os.environ.get("LANGFUSE_HOST"), ) instrumentor.start() # --- Secrets via env vars --- HF_TOKEN = os.getenv("HF_TOKEN") # OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") OPENWEATHERMAP_KEY = os.getenv("OPENWEATHERMAP_API_KEY") SERPER_API_KEY = os.getenv("SERPER_API_KEY") # --- LLMs --- llm = HuggingFaceInferenceAPI( model_name="Qwen/Qwen2.5-Coder-32B-Instruct", token=HF_TOKEN, task="conversational", parameters={ "max_new_tokens": 2048, } ) memory = ChatMemoryBuffer.from_defaults(token_limit=8192) today_str = datetime.now().strftime("%B %d, %Y") ANON_USER_ID = os.environ.get("ANON_USER_ID", uuid.uuid4().hex) # # OpenAI for pure function-calling # openai_llm = OpenAI( # model="gpt-4o", # api_key=OPENAI_API_KEY, # temperature=0.0, # streaming=False, # ) # --- Tools Setup --- # DuckDuckGo duck_spec = DuckDuckGoSearchToolSpec() search_tool = FunctionTool.from_defaults(duck_spec.duckduckgo_full_search) # Weather openweather_api_key=OPENWEATHERMAP_KEY weather_tool_spec = OpenWeatherMapToolSpec(key=openweather_api_key) weather_tool = FunctionTool.from_defaults( weather_tool_spec.weather_at_location, name="current_weather", description="Get the current weather at a specific location (city, country)." ) forecast_tool = FunctionTool.from_defaults( weather_tool_spec.forecast_tommorrow_at_location, name="weather_forecast", description="Get tomorrow's weather forecast for a specific location (city, country)." ) # Playwright (synchronous start) async def _start_browser(): return await PlaywrightToolSpec.create_async_playwright_browser(headless=True) browser = asyncio.get_event_loop().run_until_complete(_start_browser()) playwright_tool_spec = PlaywrightToolSpec.from_async_browser(browser) navigate_tool = FunctionTool.from_defaults( playwright_tool_spec.navigate_to, name="web_navigate", description="Navigate to a specific URL." ) extract_text_tool = FunctionTool.from_defaults( playwright_tool_spec.extract_text, name="web_extract_text", description="Extract all text from the current page." ) extract_links_tool = FunctionTool.from_defaults( playwright_tool_spec.extract_hyperlinks, name="web_extract_links", description="Extract all hyperlinks from the current page." ) # Google News RSS def fetch_google_news_rss(): docs = RssReader(html_to_text=True).load_data(["https://news.google.com/rss"]) return [{"title":d.metadata.get("title",""), "url":d.metadata.get("link","")} for d in docs] google_rss_tool = FunctionTool.from_defaults( fn=fetch_google_news_rss, name="fetch_google_news_rss", description="Fetch latest headlines and URLs from Google News RSS." ) # Serper async def fetch_serper_news(query: str): if not serper_api_key: raise ValueError("Missing SERPER_API_KEY environment variable") url = f"https://google.serper.dev/news?q={query}&tbs=qdr%3Ad" headers = {"X-API-KEY": serper_api_key, "Content-Type": "application/json"} async with aiohttp.ClientSession() as session: async with session.get(url, headers=headers) as resp: resp.raise_for_status() return await resp.json() serper_news_tool = FunctionTool.from_defaults( fetch_serper_news, name="fetch_news_from_serper", description="Fetch news articles on a given topic via the Serper API." ) # Create the agent workflow tools = [ search_tool, navigate_tool, extract_text_tool, extract_links_tool, weather_tool, forecast_tool, google_rss_tool, serper_news_tool, ] web_agent = AgentWorkflow.from_tools_or_functions(tools, llm=llm) ctx = Context(web_agent) # Async helper to run agent queries def run_query_sync(query: str): """Helper to run async agent.run in sync context.""" return asyncio.get_event_loop().run_until_complete( web_agent.run(query, ctx=ctx) ) async def run_query(query: str): trace_id = f"agent-run-{uuid.uuid4().hex}" try: with instrumentor.observe( trace_id=trace_id, session_id="web-agent-session", user_id=ANON_USER_ID, ): return await web_agent.run(query, ctx=ctx) finally: instrumentor.flush() # Gradio interface function async def gradio_query(user_input, chat_history=None): history = chat_history or [] history.append({"role": "user", "content": user_input}) result = await run_query(user_input) text = result.response if isinstance(result.response, str) else str(result.response) history.append({"role": "assistant", "content": text}) return history, history # Build and launch Gradio app grb = gr.Blocks() with grb: gr.Markdown("## Perspicacity") gr.Markdown( "This bot can check the news, tell you the weather, and even browse websites to answer follow-up questions β€” all powered by a team of tiny AI agents working behind the scenes.\n\n" "πŸ§ͺ Built for fun during the [AI Agents course](https://huggingface.co/learn/agents-course/unit0/introduction) β€” it's just a demo to show what agents can do. \n" "πŸ™Œ Got ideas or improvements? PRs welcome! \n\n" "πŸ‘‰ _Try asking β€œWhat’s the weather in Montreal?” or β€œWhat’s in the news today?”_" ) chatbot = gr.Chatbot(type="messages") txt = gr.Textbox(placeholder="Ask me anything...", show_label=False) txt.submit( gradio_query, inputs=[txt, chatbot], outputs=[chatbot, chatbot] # first for display, second for state ) gr.Button("Send").click(gradio_query, [txt, chatbot], [chatbot, chatbot]) if __name__ == "__main__": grb.launch()