import queue import threading import spaces import os import io import soundfile as sf import gradio as gr import numpy as np import time import pymupdf import requests from pathlib import Path from pydub import AudioSegment # Add this import import tempfile import re from update_rss import generate_headline_and_description, get_next_episode_number, update_rss import torch from huggingface_hub import InferenceClient from kokoro import KModel, KPipeline # ----------------------------------------------------------------------------- # to-do # - Add field for the podcast title and description # - add field for the script # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Get default podcast materials, from Daily papers and one download # ----------------------------------------------------------------------------- from papers import PaperManager paper_manager = PaperManager() top_papers = paper_manager.get_top_content() PODCAST_SUBJECT = list(top_papers.values())[0] # ----------------------------------------------------------------------------- # LLM that writes the script (unchanged) # ----------------------------------------------------------------------------- from prompts import SYSTEM_PROMPT # client = InferenceClient( # "meta-llama/Llama-3.3-70B-Instruct", # provider="cerebras", # token=os.getenv("HF_TOKEN"), # ) client = InferenceClient( "Qwen/Qwen3-32B", provider="hf-inference", token=os.getenv("HF_TOKEN"), ) def sanitize_script(script: str) -> str: """Remove special characters like '*' from the script.""" # Remove asterisk and other special formatting characters (add more as needed) return re.sub(r'[\*\_\~\`]', '', script) def generate_podcast_script(subject: str, steering_question: str | None = None) -> str: """Ask the LLM for a script of a podcast given by two hosts.""" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": f"""Here is the topic: it's the top trending paper on Hugging Face daily papers today. You will need to analyze it by bringing profound insights.\n{subject[:10000]}"""}, ] if steering_question and len(steering_question) > 0: messages.append({"role": "user", "content": f"You could focus on this question: {steering_question}"}) response = client.chat_completion( messages, max_tokens=8156, ) full_text = response.choices[0].message.content assert "[JANE]" in full_text dialogue_start_index = full_text.find("[JANE]") podcast_text = full_text[dialogue_start_index:] podcast_text = sanitize_script(podcast_text) return podcast_text # ----------------------------------------------------------------------------- # Kokoro TTS # ----------------------------------------------------------------------------- CUDA_AVAILABLE = torch.cuda.is_available() kmodel = KModel(repo_id='hexgrad/Kokoro-82M').to("cuda" if CUDA_AVAILABLE else "cpu").eval() kpipeline = KPipeline(lang_code="a") # English voices MALE_VOICE = "am_adam" FEMALE_VOICE = "af_heart" # Pre‑warm voices to avoid first‑call latency for v in (MALE_VOICE, FEMALE_VOICE): kpipeline.load_voice(v) @spaces.GPU def generate_podcast(topic: str): material_text = PODCAST_SUBJECT # Generate podcast script! podcast_script = generate_podcast_script(material_text, topic) lines = [l for l in podcast_script.strip().splitlines() if l.strip()] pipeline = kpipeline pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE) pipeline_voice_male = pipeline.load_voice(MALE_VOICE) speed = 1. sr = 24000 for line in lines: if line.startswith("[MIKE]"): pipeline_voice = pipeline_voice_male voice = MALE_VOICE utterance = line[len("[MIKE]"):].strip() elif line.startswith("[JANE]"): pipeline_voice = pipeline_voice_female voice = FEMALE_VOICE utterance = line[len("[JANE]"):].strip() else: # fallback pipeline_voice = pipeline_voice_female voice = FEMALE_VOICE utterance = line for _, ps, _ in pipeline(utterance, voice, speed): t0 = time.time() ref_s = pipeline_voice[len(ps) - 1] audio_numpy = kmodel(ps, ref_s, speed).numpy() yield (sr, audio_numpy) t1 = time.time() print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}") # EXAMPLES = [ # ["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"], # [None, str(Path("examples/Essay_Palantir.pdf")), "Make sure to keep some critic spirit in the analysis!"], # ] first_paper = list(top_papers.values())[0] paper_id = first_paper['id'] paper_url = f"https://huggingface.co/papers/{paper_id}" paper_title = list(top_papers.keys())[0] # Make the paper title clickable clickable_title = f"[{paper_title}]({paper_url})" demo = gr.Interface( title="Daily Paper Podcast 🎙️", description=f"""Generates a podcast discussion between two hosts about today's top trending paper on Hugging Face: **{clickable_title}**\n\n[Read the paper on Hugging Face]({paper_url})\n\nBased on [Open NotebookLM](https://huggingface.co/spaces/m-ric/open-notebooklm), powered by [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M) and [Qwen3-32B](https://huggingface.co/Qwen3-32B) running on HF Inference.""", fn=generate_podcast, inputs=[ gr.Textbox( label="🤔 Do you have a specific aspect of the paper you'd like the hosts to focus on?", placeholder="You can leave this blank for a general discussion.", ), ], outputs=[ gr.Audio( label="Listen to your podcast! 🔊", format="wav", streaming=True, ), ], theme=gr.themes.Soft(), submit_btn="Generate podcast 🎙️", ) if __name__ == "__main__": demo.launch()