Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -170,7 +170,7 @@ def resize_img(input_image, max_side=640, min_side=512, size=None,
|
|
170 |
@spaces.GPU
|
171 |
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
|
172 |
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
|
173 |
-
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch',model_revision='v1.0.0')
|
174 |
if prompt is None:
|
175 |
prompt = "a photography of a model"
|
176 |
prompt = prompt + ', best quality, high quality'
|
@@ -242,15 +242,15 @@ def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, ca
|
|
242 |
num_inference_steps=denoise_steps,
|
243 |
).images
|
244 |
|
245 |
-
if if_post and if_ipa:
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
return output[0]
|
255 |
|
256 |
|
@@ -298,8 +298,8 @@ with image_blocks as demo:
|
|
298 |
outputs=imgs,
|
299 |
examples=face_list_path
|
300 |
)
|
301 |
-
with gr.Row():
|
302 |
-
|
303 |
|
304 |
with gr.Column():
|
305 |
pose_img = gr.Image(label="Pose", sources='upload', type="pil")
|
|
|
170 |
@spaces.GPU
|
171 |
def dress_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
|
172 |
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
|
173 |
+
# image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch',model_revision='v1.0.0')
|
174 |
if prompt is None:
|
175 |
prompt = "a photography of a model"
|
176 |
prompt = prompt + ', best quality, high quality'
|
|
|
242 |
num_inference_steps=denoise_steps,
|
243 |
).images
|
244 |
|
245 |
+
# if if_post and if_ipa:
|
246 |
+
#
|
247 |
+
# output_array = np.array(output[0])
|
248 |
+
#
|
249 |
+
# bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
|
250 |
+
#
|
251 |
+
# bgr_image = Image.fromarray(bgr_array)
|
252 |
+
# result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
|
253 |
+
# return result[OutputKeys.OUTPUT_IMG]
|
254 |
return output[0]
|
255 |
|
256 |
|
|
|
298 |
outputs=imgs,
|
299 |
examples=face_list_path
|
300 |
)
|
301 |
+
# with gr.Row():
|
302 |
+
# is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
|
303 |
|
304 |
with gr.Column():
|
305 |
pose_img = gr.Image(label="Pose", sources='upload', type="pil")
|