Spaces:
Running
Running
Upload 3 files
Browse files- README.md +72 -0
- app.py +109 -0
- requirements.txt +7 -0
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: AI Clinical Notes
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.42.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
# AI Clinical Notes
|
15 |
+
|
16 |
+
Created by Dr. Fernando Ly
|
17 |
+
|
18 |
+
## Description
|
19 |
+
This application helps medical professionals automatically generate clinical notes from doctor-patient conversations. It uses:
|
20 |
+
- Whisper for speech-to-text transcription
|
21 |
+
- Mixtral-8x7B for clinical note generation
|
22 |
+
- Streamlit for the user interface
|
23 |
+
|
24 |
+
## Features
|
25 |
+
- Real-time audio recording
|
26 |
+
- Automatic speech transcription
|
27 |
+
- AI-powered clinical note generation
|
28 |
+
- Clean and intuitive interface
|
29 |
+
|
30 |
+
## Setup
|
31 |
+
|
32 |
+
### System Dependencies
|
33 |
+
First, install the required system dependencies:
|
34 |
+
|
35 |
+
For Ubuntu/Debian:
|
36 |
+
```bash
|
37 |
+
sudo apt-get update
|
38 |
+
sudo apt-get install portaudio19-dev python3-pyaudio libasound2-dev
|
39 |
+
```
|
40 |
+
|
41 |
+
For other systems, check the PortAudio documentation for installation instructions.
|
42 |
+
|
43 |
+
### Python Dependencies
|
44 |
+
1. Install the required Python dependencies:
|
45 |
+
```bash
|
46 |
+
pip install -r requirements.txt
|
47 |
+
```
|
48 |
+
|
49 |
+
2. Make sure you have a `.env` file with your Huggingface API token:
|
50 |
+
```
|
51 |
+
HUGGINGFACE_TOKEN=your_token_here
|
52 |
+
```
|
53 |
+
|
54 |
+
3. Run the application:
|
55 |
+
```bash
|
56 |
+
streamlit run app.py
|
57 |
+
```
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
1. Open the application in your web browser
|
61 |
+
2. Set the desired recording duration using the slider
|
62 |
+
3. Click "Start Recording" to begin capturing the conversation
|
63 |
+
4. Wait for the transcription and clinical notes to be generated
|
64 |
+
5. Review and verify the generated notes
|
65 |
+
|
66 |
+
## Important Notes
|
67 |
+
- This is an AI-assisted tool. Always review and verify the generated notes
|
68 |
+
- Ensure you have proper consent before recording conversations
|
69 |
+
- Keep patient privacy and HIPAA compliance in mind when using this tool
|
70 |
+
|
71 |
+
## License
|
72 |
+
This project is licensed under the MIT License.
|
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from datetime import datetime
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Load environment variables - try both .env and system environment
|
11 |
+
load_dotenv()
|
12 |
+
HUGGINGFACE_TOKEN = os.getenv('HUGGINGFACE_TOKEN')
|
13 |
+
|
14 |
+
if not HUGGINGFACE_TOKEN:
|
15 |
+
st.error("Please set the HUGGINGFACE_TOKEN in your Space's secrets.")
|
16 |
+
st.stop()
|
17 |
+
|
18 |
+
# Initialize Whisper model
|
19 |
+
@st.cache_resource
|
20 |
+
def load_whisper_model():
|
21 |
+
return whisper.load_model("base")
|
22 |
+
|
23 |
+
# Mixtral API call function
|
24 |
+
def get_clinical_notes(transcription):
|
25 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
26 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}
|
27 |
+
|
28 |
+
messages = [
|
29 |
+
{"role": "system", "content": "You are a medical assistant helping to generate clinical notes from doctor-patient conversations. Format the notes in a clear, professional structure with the following sections: Chief Complaint, History of Present Illness, Review of Systems, Physical Examination, Assessment, and Plan."},
|
30 |
+
{"role": "user", "content": f"Generate clinical notes from this doctor-patient conversation: {transcription}"}
|
31 |
+
]
|
32 |
+
|
33 |
+
payload = {
|
34 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
35 |
+
"messages": messages,
|
36 |
+
"max_tokens": 500,
|
37 |
+
"stream": False
|
38 |
+
}
|
39 |
+
|
40 |
+
try:
|
41 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
42 |
+
response.raise_for_status()
|
43 |
+
return response.json()['choices'][0]['message']['content']
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error generating clinical notes: {str(e)}")
|
46 |
+
return None
|
47 |
+
|
48 |
+
# Main app
|
49 |
+
st.set_page_config(
|
50 |
+
page_title="AI Clinical Notes",
|
51 |
+
page_icon="🦀",
|
52 |
+
layout="wide"
|
53 |
+
)
|
54 |
+
|
55 |
+
st.title("🦀 AI Clinical Notes")
|
56 |
+
st.markdown("### Created by Dr. Fernando Ly")
|
57 |
+
st.markdown("This application helps medical professionals automatically generate clinical notes from patient conversations.")
|
58 |
+
|
59 |
+
# Create columns for better layout
|
60 |
+
col1, col2 = st.columns(2)
|
61 |
+
|
62 |
+
with col1:
|
63 |
+
st.subheader("Recording Controls")
|
64 |
+
# Audio recorder
|
65 |
+
audio_bytes = st.audio_recorder(
|
66 |
+
text="Click to record",
|
67 |
+
recording_color="#e87676",
|
68 |
+
neutral_color="#6aa36f",
|
69 |
+
icon_name="microphone"
|
70 |
+
)
|
71 |
+
|
72 |
+
if audio_bytes:
|
73 |
+
try:
|
74 |
+
# Save audio temporarily
|
75 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
76 |
+
filename = f"recording_{timestamp}.wav"
|
77 |
+
with open(filename, "wb") as f:
|
78 |
+
f.write(audio_bytes)
|
79 |
+
|
80 |
+
with st.spinner("Transcribing audio..."):
|
81 |
+
# Transcribe audio
|
82 |
+
model = load_whisper_model()
|
83 |
+
result = model.transcribe(filename)
|
84 |
+
st.session_state.transcription = result["text"]
|
85 |
+
|
86 |
+
with st.spinner("Generating clinical notes..."):
|
87 |
+
# Generate clinical notes
|
88 |
+
st.session_state.clinical_notes = get_clinical_notes(st.session_state.transcription)
|
89 |
+
|
90 |
+
# Clean up audio file
|
91 |
+
os.remove(filename)
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
st.error(f"Error processing audio: {str(e)}")
|
95 |
+
|
96 |
+
with col2:
|
97 |
+
# Display results
|
98 |
+
if "transcription" in st.session_state and st.session_state.transcription:
|
99 |
+
st.subheader("📝 Transcription")
|
100 |
+
st.write(st.session_state.transcription)
|
101 |
+
|
102 |
+
if "clinical_notes" in st.session_state and st.session_state.clinical_notes:
|
103 |
+
st.subheader("🏥 Clinical Notes")
|
104 |
+
st.write(st.session_state.clinical_notes)
|
105 |
+
|
106 |
+
# Footer
|
107 |
+
st.markdown("---")
|
108 |
+
st.markdown("*Note: This is an AI-assisted tool. Please review and verify all generated notes.*")
|
109 |
+
st.markdown("*For issues or feedback, please visit the [GitHub repository](https://huggingface.co/spaces/fernandoly/AI-Clinical-Notes/discussions)*")
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.42.0
|
2 |
+
openai-whisper==20231117
|
3 |
+
transformers==4.38.2
|
4 |
+
torch==2.2.0
|
5 |
+
requests==2.31.0
|
6 |
+
numpy==1.26.4
|
7 |
+
python-dotenv==1.0.1
|