Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import whisper
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from datetime import datetime
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import numpy as np
|
9 |
+
from io import BytesIO
|
10 |
+
import tempfile
|
11 |
+
|
12 |
+
# Load environment variables - try both .env and system environment
|
13 |
+
load_dotenv()
|
14 |
+
HUGGINGFACE_TOKEN = os.getenv('HUGGINGFACE_TOKEN')
|
15 |
+
|
16 |
+
if not HUGGINGFACE_TOKEN:
|
17 |
+
st.error("Please set the HUGGINGFACE_TOKEN in your Space's secrets.")
|
18 |
+
st.stop()
|
19 |
+
|
20 |
+
# Initialize Whisper model
|
21 |
+
@st.cache_resource
|
22 |
+
def load_whisper_model():
|
23 |
+
return whisper.load_model("base")
|
24 |
+
|
25 |
+
def process_audio(audio_file):
|
26 |
+
"""Process audio file and generate transcription and clinical notes"""
|
27 |
+
try:
|
28 |
+
with st.spinner("Transcribing audio..."):
|
29 |
+
# Transcribe audio
|
30 |
+
model = load_whisper_model()
|
31 |
+
result = model.transcribe(audio_file)
|
32 |
+
st.session_state.transcription = result["text"]
|
33 |
+
|
34 |
+
with st.spinner("Generating clinical notes..."):
|
35 |
+
# Generate clinical notes
|
36 |
+
st.session_state.clinical_notes = get_clinical_notes(st.session_state.transcription)
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
st.error(f"Error processing audio: {str(e)}")
|
40 |
+
|
41 |
+
# Mixtral API call function
|
42 |
+
def get_clinical_notes(transcription):
|
43 |
+
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
44 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"}
|
45 |
+
|
46 |
+
messages = [
|
47 |
+
{"role": "system", "content": "You are a medical assistant helping to generate clinical notes from doctor-patient conversations. Format the notes in a clear, professional structure with the following sections: Chief Complaint, History of Present Illness, Review of Systems, Physical Examination, Assessment, and Plan."},
|
48 |
+
{"role": "user", "content": f"Generate clinical notes from this doctor-patient conversation: {transcription}"}
|
49 |
+
]
|
50 |
+
|
51 |
+
payload = {
|
52 |
+
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
53 |
+
"messages": messages,
|
54 |
+
"max_tokens": 500,
|
55 |
+
"stream": False
|
56 |
+
}
|
57 |
+
|
58 |
+
try:
|
59 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
60 |
+
response.raise_for_status()
|
61 |
+
return response.json()['choices'][0]['message']['content']
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error generating clinical notes: {str(e)}")
|
64 |
+
return None
|
65 |
+
|
66 |
+
# Main app
|
67 |
+
st.set_page_config(
|
68 |
+
page_title="AI Clinical Notes",
|
69 |
+
page_icon="🦀",
|
70 |
+
layout="wide"
|
71 |
+
)
|
72 |
+
|
73 |
+
st.title("🦀 AI Clinical Notes")
|
74 |
+
st.markdown("### Created by Dr. Fernando Ly")
|
75 |
+
st.markdown("This application helps medical professionals automatically generate clinical notes from patient conversations.")
|
76 |
+
|
77 |
+
# Create columns for better layout
|
78 |
+
col1, col2 = st.columns(2)
|
79 |
+
|
80 |
+
with col1:
|
81 |
+
st.subheader("Audio Input")
|
82 |
+
|
83 |
+
# File upload section
|
84 |
+
st.write("Upload your recorded conversation:")
|
85 |
+
uploaded_file = st.file_uploader("Upload an audio file (WAV format)", type=['wav'])
|
86 |
+
|
87 |
+
if uploaded_file:
|
88 |
+
# Display the uploaded audio
|
89 |
+
st.audio(uploaded_file, format="audio/wav")
|
90 |
+
|
91 |
+
# Save audio temporarily
|
92 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
|
93 |
+
tmp_file.write(uploaded_file.getvalue())
|
94 |
+
process_audio(tmp_file.name)
|
95 |
+
# Clean up
|
96 |
+
os.unlink(tmp_file.name)
|
97 |
+
|
98 |
+
# Add recording instructions
|
99 |
+
st.markdown("---")
|
100 |
+
st.markdown("""
|
101 |
+
### Recording Instructions
|
102 |
+
To record your conversation:
|
103 |
+
1. Use your phone's voice recorder app
|
104 |
+
2. Save the recording as a WAV file
|
105 |
+
3. Upload it here
|
106 |
+
|
107 |
+
Alternatively, you can use these free tools:
|
108 |
+
- Windows: Voice Recorder app
|
109 |
+
- Mac: QuickTime Player
|
110 |
+
- Online: [Vocaroo](https://vocaroo.com) (saves directly as WAV)
|
111 |
+
""")
|
112 |
+
|
113 |
+
with col2:
|
114 |
+
# Display results
|
115 |
+
if "transcription" in st.session_state and st.session_state.transcription:
|
116 |
+
st.subheader("📝 Transcription")
|
117 |
+
st.write(st.session_state.transcription)
|
118 |
+
|
119 |
+
if "clinical_notes" in st.session_state and st.session_state.clinical_notes:
|
120 |
+
st.subheader("🏥 Clinical Notes")
|
121 |
+
st.write(st.session_state.clinical_notes)
|
122 |
+
|
123 |
+
# Instructions
|
124 |
+
st.markdown("---")
|
125 |
+
st.markdown("""
|
126 |
+
### How to use:
|
127 |
+
1. Record your conversation using any recording app
|
128 |
+
2. Save the recording as a WAV file
|
129 |
+
3. Upload the file using the uploader above
|
130 |
+
4. Wait for the transcription and clinical notes to be generated
|
131 |
+
5. Review the generated notes
|
132 |
+
|
133 |
+
**Note**: For best results, ensure:
|
134 |
+
- Clear audio quality
|
135 |
+
- Minimal background noise
|
136 |
+
- Proper microphone placement during recording
|
137 |
+
""")
|
138 |
+
|
139 |
+
# Footer
|
140 |
+
st.markdown("---")
|
141 |
+
st.markdown("*Note: This is an AI-assisted tool. Please review and verify all generated notes.*")
|
142 |
+
st.markdown("*For issues or feedback, please visit the [GitHub repository](https://huggingface.co/spaces/fernandoly/AI-Clinical-Notes/discussions)*")
|