import gradio as gr import torch from transformers import AutoConfig, AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from janus.utils.io import load_pil_images from PIL import Image import numpy as np import os import time import spaces # Import spaces for ZeroGPU compatibility # Load model and processor model_path = "deepseek-ai/Janus-Pro-7B" config = AutoConfig.from_pretrained(model_path) language_config = config.language_config language_config._attn_implementation = 'eager' vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, language_config=language_config, trust_remote_code=True) if torch.cuda.is_available(): vl_gpt = vl_gpt.to(torch.bfloat16).cuda() else: vl_gpt = vl_gpt.to(torch.float16) vl_chat_processor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu' @torch.inference_mode() @spaces.GPU(duration=120) # Multimodal Understanding function def multimodal_understanding(image, question, seed, top_p, temperature): # Clear CUDA cache before generating torch.cuda.empty_cache() # set seed torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed(seed) conversation = [ { "role": "<|User|>", "content": f"\n{question}", "images": [image], }, {"role": "<|Assistant|>", "content": ""}, ] pil_images = [Image.fromarray(image)] prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16) inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=4000, do_sample=False if temperature == 0 else True, use_cache=True, temperature=temperature, top_p=top_p, ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) return answer def generate(input_ids, width, height, temperature: float = 1, parallel_size: int = 5, cfg_weight: float = 5, image_token_num_per_image: int = 576, patch_size: int = 16): # Clear CUDA cache before generating torch.cuda.empty_cache() tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device) for i in range(parallel_size * 2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = vl_chat_processor.pad_id inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens) generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device) pkv = None for i in range(image_token_num_per_image): with torch.no_grad(): outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv) pkv = outputs.past_key_values hidden_states = outputs.last_hidden_state logits = vl_gpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = vl_gpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, width // patch_size, height // patch_size]) return generated_tokens.to(dtype=torch.int), patches def unpack(dec, width, height, parallel_size=5): dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8) visual_img[:, :, :] = dec return visual_img @torch.inference_mode() @spaces.GPU(duration=120) # Specify a duration to avoid timeout def generate_image(prompt, seed=None, guidance=5, t2i_temperature=1.0): # Clear CUDA cache and avoid tracking gradients torch.cuda.empty_cache() # Set the seed for reproducible results if seed is not None: torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) width = 384 height = 384 parallel_size = 5 with torch.no_grad(): messages = [{'role': '<|User|>', 'content': prompt}, {'role': '<|Assistant|>', 'content': ''}] text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(conversations=messages, sft_format=vl_chat_processor.sft_format, system_prompt='') text = text + vl_chat_processor.image_start_tag input_ids = torch.LongTensor(tokenizer.encode(text)) output, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size, temperature=t2i_temperature) images = unpack(patches, width // 16 * 16, height // 16 * 16, parallel_size=parallel_size) return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)] # Gradio interface with gr.Blocks() as demo: gr.Markdown(value="# Multimodal Understanding") with gr.Row(): image_input = gr.Image() with gr.Column(): question_input = gr.Textbox(label="Question") und_seed_input = gr.Number(label="Seed", precision=0, value=42) top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p") temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature") understanding_button = gr.Button("Chat") understanding_output = gr.Textbox(label="Response") examples_inpainting = gr.Examples( label="Multimodal Understanding examples", examples=[ [ """Analyze the provided fundus image in exhaustive detail, following the standard ophthalmological protocol for fundus examination. Output an HTML report structured as a formal medical document. The report MUST: 1. **Image Quality Assessment:** Begin with a concise assessment of image quality, noting focus, illumination, field of view, and any artifacts (and their impact on assessability). 2. **Detailed Clinical Findings:** Describe each of the following areas with the utmost precision and specificity, using proper ophthalmological terminology: * **Optic Disc:** * Size and shape (including any abnormalities). * Color (specifically noting any pallor and its location). * Cup-to-Disc Ratio (CDR), providing both vertical and horizontal estimates. * Neuroretinal Rim: Assess rim thickness in all quadrants (superior, inferior, nasal, temporal). Explicitly state whether the ISNT rule is followed or violated. Describe any notching or focal thinning. * Peripapillary Region: Describe the presence/absence of peripapillary atrophy (PPA), differentiating between alpha and beta zones. Note any hemorrhages. * **Retinal Vasculature:** * Arterioles: Describe caliber (narrowing, dilation), tortuosity, and any focal abnormalities. * Venules: Describe caliber, tortuosity, and any abnormalities. * Arteriovenous (A/V) Ratio: Estimate the A/V ratio. * Crossing Changes: Note any arteriovenous nicking or other crossing abnormalities. * Vessel Course: Describe the course of the major vessels, and check for abnormalities. * **Macula:** * Foveal Reflex: Describe the presence/absence and quality of the foveal reflex. * Pigment Changes: Note any pigmentary abnormalities, drusen, or other lesions. * Edema/Exudates: Describe any signs of macular edema or exudates. * **Peripheral Retina:** * Mid-Periphery: Describe any abnormalities (hemorrhages, exudates, tears, etc.). * Far Periphery: Note the extent of visualization and any findings. 3. **Differential Diagnosis:** Based solely on the image findings, provide a prioritized differential diagnosis. Include the most likely diagnosis and any other plausible possibilities. For each diagnosis, explain the reasoning based on the observed features. 4. **Diagnostic Confidence:** Indicate the confidence level for the primary diagnosis. List the key image findings that support the diagnosis. 5. **Simulated AI Attention Metrics:** Create a table representing a *simulated* AI attention distribution. This should reflect the expected focus areas for the most likely diagnosis, based on the known importance of different features. Provide percentages for: * Optic Disc (Total) * Cup * Neuroretinal Rim (subdivided by region if significant differences exist) * Peripapillary Atrophy * Vessels * Macula * Periphery 6. **Summary and Impression:** Provide a concise summary of the key findings and the overall impression. 7. **Recommendations:** * Provide specific, actionable recommendations based on the image findings. * If referral is warranted, clearly state the urgency and the type of specialist. * List any recommended investigations (e.g., OCT, visual fields). 8. **Disclaimer:** Include a disclaimer stating that the report is based on image analysis alone and does not replace a full clinical examination. 9. **HTML Structure:** Use semantic HTML elements (h1-h3, p, ol, ul, table, div) to create a well-structured, readable report. Include: * A report header with a title ("EyeUnit.ai | AI for Ophthalmology") and a logo * Clearly labeled sections for each part of the analysis. * Tables for the "Overall Analysis Coverage" and "AI-Driven Attention Metrics." 10. **CSS Styling:** Apply CSS styles to make the report visually appealing and professional. The report should be suitable for both screen viewing and printing (use a `@media print` block to optimize for print). * **Crucial Details:** * **PATIENT ID, NAME, AGE and DATE OF EXAM** 11. **Crucial Details:** Output ONLY the complete HTML code. Do not provide any surrounding text or explanations. Focus solely on generating the HTML report. """ , "fundus.png", ], ], inputs=[question_input, image_input], ) gr.Markdown(value="# Text-to-Image Generation") with gr.Row(): cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight") t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature") prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)") seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345) generation_button = gr.Button("Generate Images") image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300) examples_t2i = gr.Examples( label="Text to image generation examples.", examples=[ "Master shifu racoon wearing drip attire as a street gangster.", "The face of a beautiful girl", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A glass of red wine on a reflective surface.", "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.", "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.", ], inputs=prompt_input, ) understanding_button.click( multimodal_understanding, inputs=[image_input, question_input, und_seed_input, top_p, temperature], outputs=understanding_output ) generation_button.click( fn=generate_image, inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature], outputs=image_output ) demo.launch(share=True) # demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")