Fernando Moreno
Improved patient information section and simplified single timepoint analysis
b240ed0
raw
history blame
14 kB
import streamlit as st
import google.generativeai as genai
from PIL import Image
import os
from dotenv import load_dotenv
import PyPDF2
import io
from datetime import datetime
import pandas as pd
from collections import defaultdict
import re
# Page configuration
st.set_page_config(
page_title="Cornea AI Pentacam Analyzer",
page_icon="👁️",
layout="wide",
initial_sidebar_state="expanded"
)
# Load environment variables
load_dotenv()
# Configure Gemini API
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model = genai.GenerativeModel("gemini-2.0-flash-exp")
# Custom CSS
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
background-color: #2E86C1;
color: white;
padding: 0.5rem;
margin-top: 1rem;
}
.credit-box {
background-color: #f0f2f6;
padding: 1.5rem;
border-radius: 0.5rem;
margin: 1rem 0;
border-left: 5px solid #2E86C1;
}
.header-box {
background: linear-gradient(135deg, #2E86C1, #3498DB);
padding: 2rem;
border-radius: 0.5rem;
color: white;
margin-bottom: 2rem;
text-align: center;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.image-container {
margin: 1rem 0;
padding: 1rem;
border-radius: 0.5rem;
background-color: #f8f9fa;
border: 1px solid #e9ecef;
}
.analysis-container {
margin-top: 1rem;
padding: 1.5rem;
border-radius: 0.5rem;
background-color: #f8f9fa;
border: 1px solid #e9ecef;
}
.patient-info {
background-color: #fff;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e9ecef;
margin-bottom: 1rem;
}
.upload-section {
background-color: #f8f9fa;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px dashed #2E86C1;
margin: 1rem 0;
}
.info-box {
background-color: #e1f5fe;
padding: 1rem;
border-radius: 0.5rem;
margin: 0.5rem 0;
border-left: 3px solid #03a9f4;
}
.timeline-container {
margin: 2rem 0;
padding: 1rem;
background-color: #fff;
border-radius: 0.5rem;
border: 1px solid #e9ecef;
}
.timepoint-card {
background-color: #f8f9fa;
padding: 1rem;
margin: 0.5rem 0;
border-radius: 0.5rem;
border-left: 3px solid #2E86C1;
}
</style>
""", unsafe_allow_html=True)
# System prompts
CORNEA_ANALYSIS_PROMPT = """You are an expert ophthalmologist specializing in corneal diseases. Analyze these Pentacam scans and patient data with focus on:
1. Corneal Parameters Analysis:
• Thickness mapping and progression
• Topographic changes
• Elevation data (anterior and posterior)
• Keratoconus indices and classification
2. Disease Assessment:
• ABCD Keratoconus staging
• Fuchs Endothelial Corneal Dystrophy evaluation
• Subclinical corneal edema (Sun criteria)
• Risk assessment
3. Clinical Interpretation:
• Pattern recognition
• Disease progression markers
• Treatment implications
Please provide a detailed clinical assessment."""
PROGRESSION_ANALYSIS_PROMPT = """Analyze the progression of corneal parameters across multiple timepoints, focusing on:
1. Temporal Changes:
• Progressive changes in corneal thickness
• Evolution of topographic patterns
• Changes in elevation maps
• Progression of keratoconus indices
2. Rate of Progression:
• Quantify changes between timepoints
• Identify acceleration or stabilization periods
• Compare with expected disease progression
3. Risk Assessment:
• Current status evaluation
• Future progression risk
• Treatment recommendations
4. Timeline Analysis:
• Key changes between each timepoint
• Overall progression pattern
• Critical periods of change
Please provide a comprehensive progression analysis with clinical recommendations."""
def extract_patient_data(uploaded_file):
"""Extract and process patient data from uploaded file"""
patient_data = {}
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
patient_data['raw_text'] = text
else:
# Handle other file types if needed
patient_data['raw_text'] = "File type not supported for detailed extraction"
return patient_data
def analyze_timepoint(images, date, patient_data=None):
"""Analyze a single timepoint"""
prompt = f"{CORNEA_ANALYSIS_PROMPT}\n\nTimepoint: {date}\n"
if patient_data:
prompt += f"\nPatient Information:\n{patient_data}\n"
prompt += "\nPlease analyze these corneal scans:"
content = [prompt] + images
response = model.generate_content(content)
return response.text
def analyze_progression(timepoints_data):
"""Analyze progression across multiple timepoints"""
prompt = f"{PROGRESSION_ANALYSIS_PROMPT}\n\n"
prompt += "Timepoints for analysis:\n"
# Add all timepoints to the prompt
all_images = []
for date, images in timepoints_data.items():
prompt += f"\n- {date}:"
all_images.extend(images)
prompt += "\n\nPlease analyze the progression across these timepoints:"
content = [prompt] + all_images
response = model.generate_content(content)
return response.text
def extract_date_from_filename(filename):
"""Extract date from filename using common patterns"""
# Common date patterns (add more patterns if needed)
patterns = [
r'(\d{4}[-_/]\d{2}[-_/]\d{2})', # YYYY-MM-DD, YYYY_MM_DD
r'(\d{2}[-_/]\d{2}[-_/]\d{4})', # DD-MM-YYYY, DD_MM_YYYY
r'(\d{8})', # YYYYMMDD
]
for pattern in patterns:
match = re.search(pattern, filename)
if match:
date_str = match.group(1)
try:
# Try different date formats
for fmt in ['%Y-%m-%d', '%Y_%m_%d', '%d-%m-%Y', '%d_%m_%Y', '%Y%m%d']:
try:
return datetime.strptime(date_str.replace('/', '-'), fmt).strftime('%Y-%m-%d')
except ValueError:
continue
except ValueError:
continue
return None
def organize_scans_by_date(files):
"""Organize uploaded files by their dates"""
organized_files = defaultdict(list)
unorganized_files = []
for file in files:
date = extract_date_from_filename(file.name)
if date:
organized_files[date].append(file)
else:
unorganized_files.append(file)
return organized_files, unorganized_files
def main():
# Header
st.markdown("""
<div class="header-box">
<h1>Cornea AI Pentacam Analyzer</h1>
<p style="font-size: 1.2em; margin-top: 1rem;">Advanced Corneal Analysis & Diagnostics</p>
</div>
""", unsafe_allow_html=True)
# Credits
st.markdown("""
<div class="credit-box">
<h3>About</h3>
<p>Developed by Dr. Verónica Gómez Calleja</p>
<p>Cornea Specialist</p>
<p>This advanced tool assists in the analysis of Pentacam scans and corneal conditions using state-of-the-art AI technology.
It provides comprehensive analysis of corneal parameters and supports clinical decision-making in keratoconus, FECD, and other corneal conditions.</p>
<p><strong>Note:</strong> This tool is for assistance only and should not replace professional medical judgment.</p>
</div>
""", unsafe_allow_html=True)
# Patient Information Section
st.markdown("### Patient Information")
st.markdown("""
<div class="info-box">
Upload patient information including:
• Clinical history
• Previous diagnoses
• Current symptoms
• Family history
• Previous treatments
• Current medications
• Other relevant medical conditions
</div>
""", unsafe_allow_html=True)
patient_file = st.file_uploader("Upload Patient Information (PDF/Text)", type=['pdf', 'txt'])
patient_data = None
if patient_file:
patient_data = extract_patient_data(patient_file)
with st.expander("View Extracted Patient Information"):
st.text(patient_data.get('raw_text', 'No text extracted'))
# Scan Analysis Section
st.markdown("### Pentacam Scan Analysis")
analysis_type = st.radio("Select Analysis Type", ["Single Timepoint", "Progression Analysis"])
if analysis_type == "Single Timepoint":
st.markdown('<div class="upload-section">', unsafe_allow_html=True)
uploaded_files = st.file_uploader("Upload Pentacam Scans", type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
if uploaded_files:
images = []
for file in uploaded_files:
image = Image.open(file)
images.append(image)
if images:
st.markdown("#### Preview Scans")
cols = st.columns(len(images))
for idx, (col, img) in enumerate(zip(cols, images)):
with col:
st.image(img, caption=f"Scan {idx + 1}", use_column_width=True)
if st.button("Analyze Scans"):
with st.spinner("Analyzing..."):
analysis = analyze_timepoint(
images,
datetime.now().strftime("%Y-%m-%d"), # Current date for reference
patient_data.get('raw_text') if patient_data else None
)
st.markdown("### Analysis Results")
st.markdown('<div class="analysis-container">', unsafe_allow_html=True)
st.markdown(analysis)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
else: # Progression Analysis
st.markdown('<div class="upload-section">', unsafe_allow_html=True)
st.info("""Upload all your Pentacam scans at once. The system will automatically organize them by date and analyze progression.
For best results, ensure your scan filenames include dates (e.g., 'scan_2023-01-15.jpg' or 'pentacam_20230115.png')""")
uploaded_files = st.file_uploader(
"Upload All Pentacam Scans",
type=['png', 'jpg', 'jpeg'],
accept_multiple_files=True
)
if uploaded_files:
organized_files, unorganized_files = organize_scans_by_date(uploaded_files)
if organized_files:
st.markdown("### Organized Scans by Date")
st.markdown('<div class="timeline-container">', unsafe_allow_html=True)
timepoints_data = defaultdict(list)
dates = sorted(organized_files.keys())
for date in dates:
st.markdown(f'<div class="timepoint-card">', unsafe_allow_html=True)
st.markdown(f"#### Timepoint: {date}")
files = organized_files[date]
images = []
cols = st.columns(len(files))
for idx, (file, col) in enumerate(zip(files, cols)):
with col:
image = Image.open(file)
images.append(image)
st.image(image, caption=f"Scan {idx + 1}", use_column_width=True)
timepoints_data[date].extend(images)
st.markdown('</div>', unsafe_allow_html=True)
if unorganized_files:
st.warning(f"{len(unorganized_files)} files couldn't be automatically dated. Please ensure filenames include dates.")
with st.expander("Manually Assign Dates"):
for file in unorganized_files:
col1, col2 = st.columns([2, 1])
with col1:
st.text(file.name)
with col2:
date = st.date_input(f"Date for {file.name}", key=f"manual_{file.name}")
image = Image.open(file)
timepoints_data[date.strftime("%Y-%m-%d")].append(image)
if len(timepoints_data) >= 2:
if st.button("Analyze Progression"):
with st.spinner("Analyzing progression across timepoints..."):
progression_analysis = analyze_progression(timepoints_data)
st.markdown("### Progression Analysis Results")
st.markdown('<div class="analysis-container">', unsafe_allow_html=True)
st.markdown(progression_analysis)
st.markdown('</div>', unsafe_allow_html=True)
else:
st.warning("Please upload scans from at least 2 different timepoints for progression analysis.")
st.markdown('</div>', unsafe_allow_html=True)
else:
st.error("No dated scans found. Please ensure your filenames include dates (e.g., 'scan_2023-01-15.jpg').")
st.markdown('</div>', unsafe_allow_html=True)
if __name__ == "__main__":
main()