Spaces:
Paused
Paused
import gradio as gr | |
from gradio_client import Client, handle_file | |
from gradio_imageslider import ImageSlider | |
def get_flux_image(prompt): | |
client = Client("black-forest-labs/FLUX.1-schnell") | |
result = client.predict( | |
prompt=prompt, | |
seed=0, | |
randomize_seed=True, | |
width=1024, | |
height=1024, | |
num_inference_steps=4, | |
api_name="/infer" | |
) | |
print(result) | |
return result[0] | |
def get_upscale(prompt, img_path, upscale_factor): | |
client = Client("finegrain/finegrain-image-enhancer") | |
result = client.predict( | |
input_image=handle_file(img_path), | |
prompt=prompt, | |
negative_prompt="", | |
seed=42, | |
upscale_factor=upscale_factor, | |
controlnet_scale=0.6, | |
controlnet_decay=1, | |
condition_scale=6, | |
tile_width=112, | |
tile_height=144, | |
denoise_strength=0.35, | |
num_inference_steps=18, | |
solver="DDIM", | |
api_name="/process" | |
) | |
print(result) | |
return result[1] | |
def main(prompt, upscale_factor): | |
step_one_flux = get_flux_image(prompt) | |
step_two_upscale = get_upscale(prompt, step_one_flux, upscale_factor) | |
return (step_one_flux, step_two_upscale) | |
css = """ | |
#col-container{ | |
margin: 0 auto; | |
max-width: 1024px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Flux Upscaled") | |
gr.Markdown("Step 1: generate image with FLUX schnell; Step 2: UpScale with Finegraines Image-Enhancer;") | |
with gr.Group(): | |
prompt_in = gr.Textbox(label="Prompt") | |
with gr.Row(): | |
upscale_factor = gr.Radio( | |
label = "UpScale Factor", | |
choices = [ | |
2, 3, 4 | |
], | |
value = 2 | |
) | |
submit_btn = gr.Button("Submit") | |
output_res = ImageSlider(label="Flux / Upscaled") | |
submit_btn.click( | |
fn=main, | |
inputs=[prompt_in, upscale_factor], | |
outputs=[output_res], | |
) | |
demo.queue().launch(show_api=False, show_error=True) | |