Spaces:
Running
Running
update APIs
Browse files
app.py
CHANGED
|
@@ -23,46 +23,29 @@ def extract_audio(video_in):
|
|
| 23 |
return 'audio.wav'
|
| 24 |
|
| 25 |
def get_caption_from_kosmos(image_in):
|
| 26 |
-
kosmos2_client = Client("
|
| 27 |
-
|
| 28 |
kosmos2_result = kosmos2_client.predict(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
)
|
| 33 |
-
|
| 34 |
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
for sublist in data:
|
| 41 |
-
reconstructed_sentence.append(sublist[0])
|
| 42 |
-
|
| 43 |
-
full_sentence = ' '.join(reconstructed_sentence)
|
| 44 |
-
#print(full_sentence)
|
| 45 |
-
|
| 46 |
-
# Find the pattern matching the expected format ("Describe this image in detail:" followed by optional space and then the rest)...
|
| 47 |
-
pattern = r'^Describe this image in detail:\s*(.*)$'
|
| 48 |
-
# Apply the regex pattern to extract the description text.
|
| 49 |
-
match = re.search(pattern, full_sentence)
|
| 50 |
-
if match:
|
| 51 |
-
description = match.group(1)
|
| 52 |
-
print(description)
|
| 53 |
-
else:
|
| 54 |
-
print("Unable to locate valid description.")
|
| 55 |
|
| 56 |
# Find the last occurrence of "."
|
| 57 |
-
last_period_index =
|
| 58 |
|
| 59 |
# Truncate the string up to the last period
|
| 60 |
-
truncated_caption =
|
| 61 |
|
| 62 |
# print(truncated_caption)
|
| 63 |
-
print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
| 64 |
|
| 65 |
-
return
|
| 66 |
|
| 67 |
def get_caption(image_in):
|
| 68 |
client = Client("fffiloni/moondream1", hf_token=hf_token)
|
|
@@ -101,19 +84,20 @@ def get_magnet(prompt):
|
|
| 101 |
|
| 102 |
def get_audioldm(prompt):
|
| 103 |
try:
|
| 104 |
-
client = Client("
|
|
|
|
| 105 |
result = client.predict(
|
| 106 |
-
prompt, # str in 'Input text' Textbox component
|
| 107 |
-
"Low quality. Music.", # str in 'Negative prompt' Textbox component
|
| 108 |
-
10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
| 112 |
-
|
| 113 |
)
|
| 114 |
print(result)
|
| 115 |
-
|
| 116 |
-
return
|
| 117 |
except:
|
| 118 |
raise gr.Error("AudioLDM space API is not ready, please try again in few minutes ")
|
| 119 |
|
|
@@ -133,10 +117,10 @@ def get_tango(prompt):
|
|
| 133 |
try:
|
| 134 |
client = Client("fffiloni/tango")
|
| 135 |
result = client.predict(
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
)
|
| 141 |
print(result)
|
| 142 |
return result
|
|
@@ -149,10 +133,11 @@ def get_tango2(prompt):
|
|
| 149 |
try:
|
| 150 |
client = Client("declare-lab/tango2")
|
| 151 |
result = client.predict(
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
| 156 |
)
|
| 157 |
print(result)
|
| 158 |
return result
|
|
@@ -196,7 +181,7 @@ def get_ezaudio(prompt):
|
|
| 196 |
raise gr.Error("EzAudio space API is not ready, please try again in few minutes ")
|
| 197 |
|
| 198 |
def infer(image_in, chosen_model):
|
| 199 |
-
caption =
|
| 200 |
if chosen_model == "MAGNet" :
|
| 201 |
magnet_result = get_magnet(caption)
|
| 202 |
return magnet_result
|
|
@@ -240,7 +225,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 240 |
with gr.Column():
|
| 241 |
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
|
| 242 |
with gr.Row():
|
| 243 |
-
chosen_model = gr.Dropdown(label="Choose a model", choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
submit_btn = gr.Button("Submit")
|
| 245 |
with gr.Column():
|
| 246 |
audio_o = gr.Audio(label="Audio output")
|
|
|
|
| 23 |
return 'audio.wav'
|
| 24 |
|
| 25 |
def get_caption_from_kosmos(image_in):
|
| 26 |
+
kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
|
|
|
|
| 27 |
kosmos2_result = kosmos2_client.predict(
|
| 28 |
+
image_input=handle_file(image_in),
|
| 29 |
+
text_input="Detailed",
|
| 30 |
+
api_name="/generate_predictions"
|
| 31 |
)
|
|
|
|
| 32 |
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
| 33 |
|
| 34 |
+
data = kosmos2_result[1]
|
| 35 |
+
|
| 36 |
+
# Extract and combine tokens starting from the second element
|
| 37 |
+
sentence = ''.join(item['token'] for item in data[1:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
# Find the last occurrence of "."
|
| 40 |
+
#last_period_index = full_sentence.rfind('.')
|
| 41 |
|
| 42 |
# Truncate the string up to the last period
|
| 43 |
+
#truncated_caption = full_sentence[:last_period_index + 1]
|
| 44 |
|
| 45 |
# print(truncated_caption)
|
| 46 |
+
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
| 47 |
|
| 48 |
+
return sentence
|
| 49 |
|
| 50 |
def get_caption(image_in):
|
| 51 |
client = Client("fffiloni/moondream1", hf_token=hf_token)
|
|
|
|
| 84 |
|
| 85 |
def get_audioldm(prompt):
|
| 86 |
try:
|
| 87 |
+
client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
|
| 88 |
+
seed = random.randint(0, MAX_SEED)
|
| 89 |
result = client.predict(
|
| 90 |
+
text=prompt, # str in 'Input text' Textbox component
|
| 91 |
+
negative_prompt="Low quality. Music.", # str in 'Negative prompt' Textbox component
|
| 92 |
+
duration=10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
| 93 |
+
guidance_scale=6.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
| 94 |
+
random_seed=seed, # int | float in 'Seed' Number component
|
| 95 |
+
n_candidates=3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
| 96 |
+
api_name="/text2audio"
|
| 97 |
)
|
| 98 |
print(result)
|
| 99 |
+
|
| 100 |
+
return result
|
| 101 |
except:
|
| 102 |
raise gr.Error("AudioLDM space API is not ready, please try again in few minutes ")
|
| 103 |
|
|
|
|
| 117 |
try:
|
| 118 |
client = Client("fffiloni/tango")
|
| 119 |
result = client.predict(
|
| 120 |
+
prompt=prompt,
|
| 121 |
+
steps=100,
|
| 122 |
+
guidance=3,
|
| 123 |
+
api_name="/predict"
|
| 124 |
)
|
| 125 |
print(result)
|
| 126 |
return result
|
|
|
|
| 133 |
try:
|
| 134 |
client = Client("declare-lab/tango2")
|
| 135 |
result = client.predict(
|
| 136 |
+
prompt=prompt,
|
| 137 |
+
output_format="wav",
|
| 138 |
+
steps=100,
|
| 139 |
+
guidance=3,
|
| 140 |
+
api_name="/predict"
|
| 141 |
)
|
| 142 |
print(result)
|
| 143 |
return result
|
|
|
|
| 181 |
raise gr.Error("EzAudio space API is not ready, please try again in few minutes ")
|
| 182 |
|
| 183 |
def infer(image_in, chosen_model):
|
| 184 |
+
caption = get_caption_from_kosmos(image_in)
|
| 185 |
if chosen_model == "MAGNet" :
|
| 186 |
magnet_result = get_magnet(caption)
|
| 187 |
return magnet_result
|
|
|
|
| 225 |
with gr.Column():
|
| 226 |
image_in = gr.Image(sources=["upload"], type="filepath", label="Image input", value="oiseau.png")
|
| 227 |
with gr.Row():
|
| 228 |
+
chosen_model = gr.Dropdown(label="Choose a model", choices=[
|
| 229 |
+
#"MAGNet",
|
| 230 |
+
"AudioLDM-2",
|
| 231 |
+
#"AudioGen",
|
| 232 |
+
"Tango",
|
| 233 |
+
"Tango 2",
|
| 234 |
+
"Stable Audio Open",
|
| 235 |
+
"EzAudio"
|
| 236 |
+
], value="AudioLDM-2")
|
| 237 |
submit_btn = gr.Button("Submit")
|
| 238 |
with gr.Column():
|
| 239 |
audio_o = gr.Audio(label="Audio output")
|