File size: 10,286 Bytes
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
import logging
import os
import random
import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import torch.nn as nn
from inference.manganinjia_pipeline import MangaNinjiaPipeline
from diffusers import (
    ControlNetModel,
    DiffusionPipeline,
    DDIMScheduler,
    AutoencoderKL,
)
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
from src.point_network import PointNet
from src.annotator.lineart import BatchLineartDetector

if "__main__" == __name__:
    logging.basicConfig(level=logging.INFO)

    # -------------------- Arguments --------------------
    parser = argparse.ArgumentParser(
        description="Run single-image MangaNinjia"
    )
    parser.add_argument(
        "--output_dir", type=str, required=True, help="Output directory."
    )

    # inference setting
    parser.add_argument(
        "--denoise_steps",
        type=int,
        default=50,  # quantitative evaluation uses 50 steps
        help="Diffusion denoising steps, more steps results in higher accuracy but slower inference speed.",
    )

    # resolution setting
    parser.add_argument("--seed", type=int, default=None, help="Random seed.")

    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--image_encoder_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--controlnet_model_name_or_path", type=str, required=True, help="Path to original controlnet."
    )
    parser.add_argument(
        "--annotator_ckpts_path", type=str, required=True, help="Path to depth inpainting model."
    )
    parser.add_argument(
        "--manga_reference_unet_path", type=str, required=True, help="Path to depth inpainting model."
    )
    parser.add_argument(
        "--manga_main_model_path", type=str, required=True, help="Path to depth inpainting model."
    )
    parser.add_argument(
        "--manga_controlnet_model_path", type=str, required=True, help="Path to depth inpainting model."
    )
    parser.add_argument(
        "--point_net_path", type=str, required=True, help="Path to depth inpainting model."
    )
    parser.add_argument(
        "--input_reference_paths",
        nargs='+',
        default=None,
        help="input_image_paths",
    )
    parser.add_argument(
        "--input_lineart_paths",
        nargs='+',
        default=None,
        help="lineart_paths",
    )
    parser.add_argument(
        "--point_ref_paths",
        type=str,
        default=None,
        nargs="+",
    )
    parser.add_argument(
        "--point_lineart_paths",
        type=str,
        default=None,
        nargs="+",
    )
    parser.add_argument(
        "--is_lineart",
        action="store_true",
        default=False
    )
    parser.add_argument(
        "--guidance_scale_ref",
        type=float,
        default=1e-4,
        help="guidance scale for reference image",
    )
    parser.add_argument(
        "--guidance_scale_point",
        type=float,
        default=1e-4,
        help="guidance scale for points",
    )
    args = parser.parse_args()
    output_dir = args.output_dir
    denoise_steps = args.denoise_steps
    seed = args.seed
    is_lineart = args.is_lineart
    os.makedirs(output_dir, exist_ok=True)
    logging.info(f"output dir = {output_dir}")
    if args.input_reference_paths is not None:
        assert len(args.input_reference_paths) == len(args.input_lineart_paths)
    input_reference_paths = args.input_reference_paths
    input_lineart_paths = args.input_lineart_paths
    if args.point_ref_paths is not None:
        point_ref_paths = args.point_ref_paths
        point_lineart_paths = args.point_lineart_paths
        assert len(point_ref_paths) == len(point_lineart_paths)
    print(f"arguments: {args}")
    if seed is None:
        import time

        seed = int(time.time())
    generator = torch.cuda.manual_seed(seed)
    # -------------------- Device --------------------
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
        logging.warning("CUDA is not available. Running on CPU will be slow.")
    logging.info(f"device = {device}")

    # -------------------- Model --------------------
    preprocessor = BatchLineartDetector(args.annotator_ckpts_path)
    preprocessor.to(device,dtype=torch.float32) 
    in_channels_reference_unet = 4
    in_channels_denoising_unet = 4
    in_channels_controlnet = 4
    noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path,subfolder='scheduler')
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder='vae'
    )

    denoising_unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,subfolder="unet",
        in_channels=in_channels_denoising_unet,
        low_cpu_mem_usage=False,
        ignore_mismatched_sizes=True
    )
            
    reference_unet = RefUNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,subfolder="unet",
        in_channels=in_channels_reference_unet,
        low_cpu_mem_usage=False,
        ignore_mismatched_sizes=True
    )
    refnet_tokenizer = CLIPTokenizer.from_pretrained(args.image_encoder_path)
    refnet_text_encoder = CLIPTextModel.from_pretrained(args.image_encoder_path)
    refnet_image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
        
    controlnet = ControlNetModel.from_pretrained(
        args.controlnet_model_name_or_path,
        in_channels=in_channels_controlnet,
        low_cpu_mem_usage=False,
        ignore_mismatched_sizes=True
    )
    controlnet_tokenizer = CLIPTokenizer.from_pretrained(args.image_encoder_path)
    controlnet_text_encoder = CLIPTextModel.from_pretrained(args.image_encoder_path)
    controlnet_image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
        

    point_net=PointNet()



    controlnet.load_state_dict(
            torch.load(args.manga_controlnet_model_path, map_location="cpu"),
            strict=False,
            )
    point_net.load_state_dict(
            torch.load(args.point_net_path, map_location="cpu"),
            strict=False,
            )
    reference_unet.load_state_dict(
            torch.load(args.manga_reference_unet_path, map_location="cpu"),
            strict=False,
            )
    denoising_unet.load_state_dict(
            torch.load(args.manga_main_model_path, map_location="cpu"),
            strict=False,
            )
    pipe = MangaNinjiaPipeline(
            reference_unet=reference_unet,
            controlnet=controlnet,
            denoising_unet=denoising_unet,  
            vae=vae,
            refnet_tokenizer=refnet_tokenizer,
            refnet_text_encoder=refnet_text_encoder,
            refnet_image_encoder=refnet_image_encoder,
            controlnet_tokenizer=controlnet_tokenizer,
            controlnet_text_encoder=controlnet_text_encoder,
            controlnet_image_encoder=controlnet_image_encoder,
            scheduler=noise_scheduler,
            point_net=point_net
        )
    pipe = pipe.to(torch.device(device))

    # -------------------- Inference and saving --------------------
    with torch.no_grad():
        for i in range(len(input_reference_paths)):
            input_reference_path = input_reference_paths[i]
            input_lineart_path = input_lineart_paths[i]

            # save path
            rgb_name_base = os.path.splitext(os.path.basename(input_reference_path))[0]
            pred_name_base = rgb_name_base + "_colorized"
            lineart_name_base = rgb_name_base + "_lineart"
            colored_save_path = os.path.join(
                output_dir, f"{pred_name_base}.png"
            )
            lineart_save_path = os.path.join(
                output_dir, f"{lineart_name_base}.png"
            )
            if point_ref_paths is not None:
                point_ref_path = point_ref_paths[i]
                point_lineart_path = point_lineart_paths[i]
                point_ref = torch.from_numpy(np.load(point_ref_path)).unsqueeze(0).unsqueeze(0)
                point_main = torch.from_numpy(np.load(point_lineart_path)).unsqueeze(0).unsqueeze(0)
            else:
                matrix1 = np.zeros((512, 512), dtype=np.uint8)
                matrix2 = np.zeros((512, 512), dtype=np.uint8)
                point_ref = torch.from_numpy(matrix1).unsqueeze(0).unsqueeze(0)
                point_main = torch.from_numpy(matrix2).unsqueeze(0).unsqueeze(0)
            ref_image = Image.open(input_reference_path)
            ref_image = ref_image.resize((512, 512))
            target_image = Image.open(input_lineart_path)
            target_image = target_image.resize((512, 512))
            pipe_out = pipe(
                is_lineart,
                ref_image,
                target_image,
                target_image,
                denosing_steps=denoise_steps,
                processing_res=512,
                match_input_res=True,
                batch_size=1,
                show_progress_bar=True,
                guidance_scale_ref=args.guidance_scale_ref,
                guidance_scale_point=args.guidance_scale_point,
                preprocessor=preprocessor,
                generator=generator,
                point_ref=point_ref,  
                point_main=point_main,  
            )

            if os.path.exists(colored_save_path):
                logging.warning(f"Existing file: '{colored_save_path}' will be overwritten")
            image = pipe_out.img_pil
            lineart = pipe_out.to_save_dict['edge2_black']
            image.save(colored_save_path)
            lineart.save(lineart_save_path)