Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,286 Bytes
459fa69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import argparse
import logging
import os
import random
import numpy as np
import torch
from PIL import Image
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import torch.nn as nn
from inference.manganinjia_pipeline import MangaNinjiaPipeline
from diffusers import (
ControlNetModel,
DiffusionPipeline,
DDIMScheduler,
AutoencoderKL,
)
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
from src.point_network import PointNet
from src.annotator.lineart import BatchLineartDetector
if "__main__" == __name__:
logging.basicConfig(level=logging.INFO)
# -------------------- Arguments --------------------
parser = argparse.ArgumentParser(
description="Run single-image MangaNinjia"
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# inference setting
parser.add_argument(
"--denoise_steps",
type=int,
default=50, # quantitative evaluation uses 50 steps
help="Diffusion denoising steps, more steps results in higher accuracy but slower inference speed.",
)
# resolution setting
parser.add_argument("--seed", type=int, default=None, help="Random seed.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--controlnet_model_name_or_path", type=str, required=True, help="Path to original controlnet."
)
parser.add_argument(
"--annotator_ckpts_path", type=str, required=True, help="Path to depth inpainting model."
)
parser.add_argument(
"--manga_reference_unet_path", type=str, required=True, help="Path to depth inpainting model."
)
parser.add_argument(
"--manga_main_model_path", type=str, required=True, help="Path to depth inpainting model."
)
parser.add_argument(
"--manga_controlnet_model_path", type=str, required=True, help="Path to depth inpainting model."
)
parser.add_argument(
"--point_net_path", type=str, required=True, help="Path to depth inpainting model."
)
parser.add_argument(
"--input_reference_paths",
nargs='+',
default=None,
help="input_image_paths",
)
parser.add_argument(
"--input_lineart_paths",
nargs='+',
default=None,
help="lineart_paths",
)
parser.add_argument(
"--point_ref_paths",
type=str,
default=None,
nargs="+",
)
parser.add_argument(
"--point_lineart_paths",
type=str,
default=None,
nargs="+",
)
parser.add_argument(
"--is_lineart",
action="store_true",
default=False
)
parser.add_argument(
"--guidance_scale_ref",
type=float,
default=1e-4,
help="guidance scale for reference image",
)
parser.add_argument(
"--guidance_scale_point",
type=float,
default=1e-4,
help="guidance scale for points",
)
args = parser.parse_args()
output_dir = args.output_dir
denoise_steps = args.denoise_steps
seed = args.seed
is_lineart = args.is_lineart
os.makedirs(output_dir, exist_ok=True)
logging.info(f"output dir = {output_dir}")
if args.input_reference_paths is not None:
assert len(args.input_reference_paths) == len(args.input_lineart_paths)
input_reference_paths = args.input_reference_paths
input_lineart_paths = args.input_lineart_paths
if args.point_ref_paths is not None:
point_ref_paths = args.point_ref_paths
point_lineart_paths = args.point_lineart_paths
assert len(point_ref_paths) == len(point_lineart_paths)
print(f"arguments: {args}")
if seed is None:
import time
seed = int(time.time())
generator = torch.cuda.manual_seed(seed)
# -------------------- Device --------------------
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"device = {device}")
# -------------------- Model --------------------
preprocessor = BatchLineartDetector(args.annotator_ckpts_path)
preprocessor.to(device,dtype=torch.float32)
in_channels_reference_unet = 4
in_channels_denoising_unet = 4
in_channels_controlnet = 4
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path,subfolder='scheduler')
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder='vae'
)
denoising_unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_denoising_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
reference_unet = RefUNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_reference_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
refnet_tokenizer = CLIPTokenizer.from_pretrained(args.image_encoder_path)
refnet_text_encoder = CLIPTextModel.from_pretrained(args.image_encoder_path)
refnet_image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
controlnet = ControlNetModel.from_pretrained(
args.controlnet_model_name_or_path,
in_channels=in_channels_controlnet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
controlnet_tokenizer = CLIPTokenizer.from_pretrained(args.image_encoder_path)
controlnet_text_encoder = CLIPTextModel.from_pretrained(args.image_encoder_path)
controlnet_image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
point_net=PointNet()
controlnet.load_state_dict(
torch.load(args.manga_controlnet_model_path, map_location="cpu"),
strict=False,
)
point_net.load_state_dict(
torch.load(args.point_net_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(args.manga_reference_unet_path, map_location="cpu"),
strict=False,
)
denoising_unet.load_state_dict(
torch.load(args.manga_main_model_path, map_location="cpu"),
strict=False,
)
pipe = MangaNinjiaPipeline(
reference_unet=reference_unet,
controlnet=controlnet,
denoising_unet=denoising_unet,
vae=vae,
refnet_tokenizer=refnet_tokenizer,
refnet_text_encoder=refnet_text_encoder,
refnet_image_encoder=refnet_image_encoder,
controlnet_tokenizer=controlnet_tokenizer,
controlnet_text_encoder=controlnet_text_encoder,
controlnet_image_encoder=controlnet_image_encoder,
scheduler=noise_scheduler,
point_net=point_net
)
pipe = pipe.to(torch.device(device))
# -------------------- Inference and saving --------------------
with torch.no_grad():
for i in range(len(input_reference_paths)):
input_reference_path = input_reference_paths[i]
input_lineart_path = input_lineart_paths[i]
# save path
rgb_name_base = os.path.splitext(os.path.basename(input_reference_path))[0]
pred_name_base = rgb_name_base + "_colorized"
lineart_name_base = rgb_name_base + "_lineart"
colored_save_path = os.path.join(
output_dir, f"{pred_name_base}.png"
)
lineart_save_path = os.path.join(
output_dir, f"{lineart_name_base}.png"
)
if point_ref_paths is not None:
point_ref_path = point_ref_paths[i]
point_lineart_path = point_lineart_paths[i]
point_ref = torch.from_numpy(np.load(point_ref_path)).unsqueeze(0).unsqueeze(0)
point_main = torch.from_numpy(np.load(point_lineart_path)).unsqueeze(0).unsqueeze(0)
else:
matrix1 = np.zeros((512, 512), dtype=np.uint8)
matrix2 = np.zeros((512, 512), dtype=np.uint8)
point_ref = torch.from_numpy(matrix1).unsqueeze(0).unsqueeze(0)
point_main = torch.from_numpy(matrix2).unsqueeze(0).unsqueeze(0)
ref_image = Image.open(input_reference_path)
ref_image = ref_image.resize((512, 512))
target_image = Image.open(input_lineart_path)
target_image = target_image.resize((512, 512))
pipe_out = pipe(
is_lineart,
ref_image,
target_image,
target_image,
denosing_steps=denoise_steps,
processing_res=512,
match_input_res=True,
batch_size=1,
show_progress_bar=True,
guidance_scale_ref=args.guidance_scale_ref,
guidance_scale_point=args.guidance_scale_point,
preprocessor=preprocessor,
generator=generator,
point_ref=point_ref,
point_main=point_main,
)
if os.path.exists(colored_save_path):
logging.warning(f"Existing file: '{colored_save_path}' will be overwritten")
image = pipe_out.img_pil
lineart = pipe_out.to_save_dict['edge2_black']
image.save(colored_save_path)
lineart.save(lineart_save_path) |