File size: 17,408 Bytes
9c1c36c
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074ecb8
 
 
 
 
 
 
 
 
186c207
074ecb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186c207
074ecb8
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1c36c
a1090a0
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9480f0b
459fa69
 
 
 
a1090a0
 
 
 
 
459fa69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074ecb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import cv2
import gradio as gr
import torch
import torch.nn.functional as F
from omegaconf import OmegaConf
import numpy as np
import os
import re
from PIL import Image, ImageDraw
import cv2
#
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import torch.nn as nn
from inference.manganinjia_pipeline import MangaNinjiaPipeline
from diffusers import (
    ControlNetModel,
    DiffusionPipeline,
    DDIMScheduler,
    AutoencoderKL,
)
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
from src.point_network import PointNet
from src.annotator.lineart import BatchLineartDetector
val_configs = OmegaConf.load('./configs/inference.yaml')
# download the checkpoints
from huggingface_hub import snapshot_download, hf_hub_download

os.makedirs("checkpoints", exist_ok=True)

# List of subdirectories to create inside "checkpoints"
subfolders = [
    "StableDiffusion",
    "models",
    "MangaNinjia"
]
# Create each subdirectory
for subfolder in subfolders:
    os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)

# List of subdirectories to create inside "models"
models_subfolders = [
    "clip-vit-large-patch14",
    "control_v11p_sd15_lineart",
    "Annotators"
]
# Create each subdirectory
for subfolder in models_subfolders:
    os.makedirs(os.path.join("checkpoints/models", subfolder), exist_ok=True)

snapshot_download(
    repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5",
    local_dir = "./checkpoints/StableDiffusion"  
)
snapshot_download(
    repo_id = "openai/clip-vit-large-patch14",
    local_dir = "./checkpoints/models/clip-vit-large-patch14"  
)
snapshot_download(
    repo_id = "lllyasviel/control_v11p_sd15_lineart",
    local_dir = "./checkpoints/models/control_v11p_sd15_lineart"  
)
hf_hub_download(
    repo_id = "lllyasviel/Annotators",
    filename = "sk_model.pth",
    local_dir = "./checkpoints/models/Annotators" 
)
snapshot_download(
    repo_id = "Johanan0528/MangaNinjia",
    local_dir = "./checkpoints/MangaNinjia"  
)
# === load the checkpoint ===
pretrained_model_name_or_path = val_configs.model_path.pretrained_model_name_or_path
refnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_model_name_or_path = val_configs.model_path.controlnet_model_name
annotator_ckpts_path = val_configs.model_path.annotator_ckpts_path

output_root = val_configs.inference_config.output_path
device = val_configs.inference_config.device
preprocessor = BatchLineartDetector(annotator_ckpts_path)
in_channels_reference_unet = 4
in_channels_denoising_unet = 4
in_channels_controlnet = 4
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path,subfolder='scheduler')
vae = AutoencoderKL.from_pretrained(
    pretrained_model_name_or_path,
    subfolder='vae'
)

denoising_unet = UNet2DConditionModel.from_pretrained(
    pretrained_model_name_or_path,subfolder="unet",
    in_channels=in_channels_denoising_unet,
    low_cpu_mem_usage=False,
    ignore_mismatched_sizes=True
)
        
reference_unet = RefUNet2DConditionModel.from_pretrained(
    pretrained_model_name_or_path,subfolder="unet",
    in_channels=in_channels_reference_unet,
    low_cpu_mem_usage=False,
    ignore_mismatched_sizes=True
)
refnet_tokenizer = CLIPTokenizer.from_pretrained(refnet_clip_vision_encoder_path)
refnet_text_encoder = CLIPTextModel.from_pretrained(refnet_clip_vision_encoder_path)
refnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(refnet_clip_vision_encoder_path)
       
controlnet = ControlNetModel.from_pretrained(
    controlnet_model_name_or_path,
    in_channels=in_channels_controlnet,
    low_cpu_mem_usage=False,
    ignore_mismatched_sizes=True
)
controlnet_tokenizer = CLIPTokenizer.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_text_encoder = CLIPTextModel.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(controlnet_clip_vision_encoder_path)
      

point_net=PointNet()
reference_control_writer = ReferenceAttentionControl(
            reference_unet,
            do_classifier_free_guidance=False,
            mode="write",
            fusion_blocks="full",
        )
reference_control_reader = ReferenceAttentionControl(
    denoising_unet,
    do_classifier_free_guidance=False,
    mode="read",
    fusion_blocks="full",
)



controlnet.load_state_dict(
        torch.load(val_configs.model_path.manga_control_model_path, map_location="cpu"),
        strict=False,
        )
point_net.load_state_dict(
        torch.load(val_configs.model_path.point_net_path, map_location="cpu"),
        strict=False,
        )
reference_unet.load_state_dict(
        torch.load(val_configs.model_path.manga_reference_model_path, map_location="cpu"),
        strict=False,
        )
denoising_unet.load_state_dict(
        torch.load(val_configs.model_path.manga_main_model_path, map_location="cpu"),
        strict=False,
        )
pipe = MangaNinjiaPipeline(
        reference_unet=reference_unet,
        controlnet=controlnet,
        denoising_unet=denoising_unet,  
        vae=vae,
        refnet_tokenizer=refnet_tokenizer,
        refnet_text_encoder=refnet_text_encoder,
        refnet_image_encoder=refnet_image_enc,
        controlnet_tokenizer=controlnet_tokenizer,
        controlnet_text_encoder=controlnet_text_encoder,
        controlnet_image_encoder=controlnet_image_enc,
        scheduler=noise_scheduler,
        point_net=point_net
    )
pipe = pipe.to(torch.device(device))
def string_to_np_array(coord_string):
    coord_string = coord_string.strip('[]')
    coords = re.findall(r'\d+', coord_string)
    coords = list(map(int, coords))
    coord_array = np.array(coords).reshape(-1, 2)
    return coord_array
def infer_single(is_lineart, ref_image, target_image, output_coords_ref, output_coords_base, seed = -1, num_inference_steps=20, guidance_scale_ref = 9, guidance_scale_point =15 ):
    """
    mask: 0/1 1-channel  np.array
    image: rgb           np.array
    """
    generator = torch.cuda.manual_seed(seed)
    matrix1 = np.zeros((512, 512), dtype=np.uint8)
    matrix2 = np.zeros((512, 512), dtype=np.uint8)
    output_coords_ref = string_to_np_array(output_coords_ref)
    output_coords_base = string_to_np_array(output_coords_base)
    for index, (coords_ref,coords_base) in enumerate(zip(output_coords_ref,output_coords_base)):
        y1, x1 = coords_ref 
        y2, x2 = coords_base
        matrix1[y1, x1] = index + 1
        matrix2[y2, x2] = index + 1
    point_ref = torch.from_numpy(matrix1).unsqueeze(0).unsqueeze(0)
    point_main = torch.from_numpy(matrix2).unsqueeze(0).unsqueeze(0)
    preprocessor.to(device,dtype=torch.float32) 
    pipe_out = pipe(
        is_lineart,
        ref_image,
        target_image,
        target_image,
        denosing_steps=num_inference_steps,
        processing_res=512,
        match_input_res=True,
        batch_size=1,
        show_progress_bar=True,
        guidance_scale_ref=guidance_scale_ref,
        guidance_scale_point=guidance_scale_point,
        preprocessor=preprocessor,
        generator=generator,
        point_ref=point_ref,  
        point_main=point_main,  
    )
    return pipe_out


def inference_single_image(ref_image, 
                           tar_image, 
                           ddim_steps, 
                           scale_ref,
                           scale_point, 
                           seed,
                           output_coords1,
                           output_coords2,
                           is_lineart
                           ):
    if seed == -1:
        seed = np.random.randint(10000)
    pipe_out = infer_single(is_lineart, ref_image, tar_image, output_coords_ref=output_coords1, output_coords_base=output_coords2,seed=seed ,num_inference_steps=ddim_steps, guidance_scale_ref = scale_ref, guidance_scale_point = scale_point
                           )
    return pipe_out
clicked_points_img1 = []
clicked_points_img2 = []
current_img_idx = 0  
max_clicks = 14  
point_size = 8  
colors = [(255, 0, 0), (0, 255, 0)] 

# Process images: resizing them to 512x512
def process_image(ref, base):
    ref_resized = cv2.resize(ref, (512, 512))  # Note OpenCV resize order is (width, height)
    base_resized = cv2.resize(base, (512, 512))
    return ref_resized, base_resized

# Convert string to numpy array of coordinates
def string_to_np_array(coord_string):
    coord_string = coord_string.strip('[]')
    coords = re.findall(r'\d+', coord_string)
    coords = list(map(int, coords))
    coord_array = np.array(coords).reshape(-1, 2)
    return coord_array

# Function to handle click events
def get_select_coords(img1, img2, evt: gr.SelectData):
    global clicked_points_img1, clicked_points_img2, current_img_idx
    click_coords = (evt.index[1], evt.index[0])

    if current_img_idx == 0:
        clicked_points_img1.append(click_coords)
        if len(clicked_points_img1) > max_clicks:
            clicked_points_img1 = []
        current_img = img1
        clicked_points = clicked_points_img1
    else:
        clicked_points_img2.append(click_coords)
        if len(clicked_points_img2) > max_clicks:
            clicked_points_img2 = []
        current_img = img2
        clicked_points = clicked_points_img2

    current_img_idx = 1 - current_img_idx
    img_pil = Image.fromarray(current_img.astype('uint8'))
    draw = ImageDraw.Draw(img_pil)
    for idx, point in enumerate(clicked_points):
        x, y = point
        color = colors[current_img_idx]
        for dx in range(-point_size, point_size + 1):
            for dy in range(-point_size, point_size + 1):
                if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
                    draw.point((y+dy, x+dx), fill=color)

    img_out = np.array(img_pil)
    coord_array = np.array([(x, y) for x, y in clicked_points])
    return img_out, coord_array

# Function to clear the clicked points
def undo_last_point(ref, base):
    global clicked_points_img1, clicked_points_img2, current_img_idx
    current_img_idx=1-current_img_idx
    if current_img_idx == 0 and clicked_points_img1:
        clicked_points_img1.pop()  # Undo last point in ref
    elif current_img_idx == 1 and clicked_points_img2:
        clicked_points_img2.pop()  # Undo last point in base

    # After removing the last point, redraw the image without it
    if current_img_idx == 0:
        current_img = ref
        current_img_other = base
        clicked_points = clicked_points_img1
        clicked_points_other = clicked_points_img2
    else:
        current_img = base
        current_img_other = ref
        clicked_points = clicked_points_img2
        clicked_points_other = clicked_points_img1

    # Redraw the image without the last point
    img_pil = Image.fromarray(current_img.astype('uint8'))
    draw = ImageDraw.Draw(img_pil)
    for idx, point in enumerate(clicked_points):
        x, y = point
        color = colors[current_img_idx]
        for dx in range(-point_size, point_size + 1):
            for dy in range(-point_size, point_size + 1):
                if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
                    draw.point((y+dy, x+dx), fill=color)
    img_out = np.array(img_pil)


    img_pil_other = Image.fromarray(current_img_other.astype('uint8'),)
    draw_other = ImageDraw.Draw(img_pil_other)
    for idx, point in enumerate(clicked_points_other):
        x, y = point
        color = colors[1-current_img_idx]
        for dx in range(-point_size, point_size + 1):
            for dy in range(-point_size, point_size + 1):
                if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
                    draw_other.point((y+dy, x+dx), fill=color)
    img_out_other = np.array(img_pil_other)

    coord_array = np.array([(x, y) for x, y in clicked_points])
    # Return the updated image and coordinates as text
    updated_coords = str(coord_array.tolist())
    
    # If current_img_idx is 0, it means we are working with ref, so return for ref
    if current_img_idx == 0:
        coord_array2 = np.array([(x, y) for x, y in clicked_points_img2])
        updated_coords2 = str(coord_array2.tolist())
        return img_out, updated_coords, img_out_other, updated_coords2  # for ref image
    else:
        coord_array1 = np.array([(x, y) for x, y in clicked_points_img1])
        updated_coords1 = str(coord_array1.tolist())
        return img_out_other, updated_coords1, img_out, updated_coords  # for base image


# Main function to run the image processing
@spaces.GPU
def run_local(ref, base, *args, progress=gr.Progress(track_tqdm=True)):
    image = Image.fromarray(base)
    ref_image = Image.fromarray(ref)
    
    pipe_out = inference_single_image(ref_image.copy(), image.copy(), *args)
    to_save_dict = pipe_out.to_save_dict
    to_save_dict['edit2'] = pipe_out.img_pil
    return [to_save_dict['edit2'], to_save_dict['edge2_black']]

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("#  MangaNinja: Line Art Colorization with Precise Reference Following")
        
        with gr.Row():
            baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
            
            with gr.Accordion("Advanced Option", open=True):
                num_samples = 1
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
                scale_ref = gr.Slider(label="Guidance of ref", minimum=0, maximum=30.0, value=9, step=0.1)
                scale_point = gr.Slider(label="Guidance of points", minimum=0, maximum=30.0, value=15, step=0.1)
                is_lineart = gr.Checkbox(label="Input is lineart", value=False)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
                
                gr.Markdown("### Tutorial")
                gr.Markdown("1. Upload the reference image and target image. Note that for the target image, there are two modes: you can upload an RGB image, and the model will automatically extract the line art; or you can directly upload the line art by checking the 'input is lineart' option.")
                gr.Markdown("2. Click 'Process Images' to resize the images to 512*512 resolution.")
                gr.Markdown("3. (Optional) **Starting from the reference image**, **alternately** click on the reference and target images in sequence to define matching points. Use 'Undo' to revert the last action.")
                gr.Markdown("4. Click 'Generate' to produce the result.")
        gr.Markdown("# Upload the reference image and target image")
        
        with gr.Row():
            ref = gr.Image(label="Reference Image",)
            base = gr.Image(label="Target Image",)
        gr.Button("Process Images").click(process_image, inputs=[ref, base], outputs=[ref, base])
            
        with gr.Row():
            output_img1 = gr.Image(label="Reference Output")
            output_coords1 = gr.Textbox(lines=2, label="Clicked Coordinates Image 1 (npy format)")
            output_img2 = gr.Image(label="Base Output")
            output_coords2 = gr.Textbox(lines=2, label="Clicked Coordinates Image 2 (npy format)")

        # Image click select functions
        ref.select(get_select_coords, [ref, base], [output_img1, output_coords1])
        base.select(get_select_coords, [ref, base], [output_img2, output_coords2])
        
        # Undo button
        undo_button = gr.Button("Undo")
        undo_button.click(undo_last_point, inputs=[ref, base], outputs=[output_img1, output_coords1, output_img2, output_coords2])

        run_local_button = gr.Button("Generate")
        
    with gr.Row():
        gr.Examples(
            examples=[
                ['test_cases/hz0.png', 'test_cases/manga_target_examples/target_1.jpg'],
                ['test_cases/more_cases/az0.png', 'test_cases/manga_target_examples/target_2.jpg'],
                ['test_cases/more_cases/hi0.png', 'test_cases/manga_target_examples/target_3.jpg'],
                ['test_cases/more_cases/kn0.jpg', 'test_cases/manga_target_examples/target_4.jpg'],
                ['test_cases/more_cases/rk0.jpg', 'test_cases/manga_target_examples/target_5.jpg'],
            
            
            ],
            inputs=[ref, base],
            cache_examples=False,
            examples_per_page=100
        )
        

    run_local_button.click(fn=run_local, 
                           inputs=[ref, 
                                   base, 
                                   ddim_steps, 
                                   scale_ref,
                                   scale_point, 
                                   seed,
                                   output_coords1,
                                   output_coords2,
                                   is_lineart
                                  ], 
                           outputs=[baseline_gallery]
    )

demo.launch(show_api=False, show_error=True)