Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,408 Bytes
9c1c36c 459fa69 074ecb8 186c207 074ecb8 186c207 074ecb8 459fa69 9c1c36c a1090a0 459fa69 9480f0b 459fa69 a1090a0 459fa69 074ecb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import spaces
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import cv2
import gradio as gr
import torch
import torch.nn.functional as F
from omegaconf import OmegaConf
import numpy as np
import os
import re
from PIL import Image, ImageDraw
import cv2
#
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import torch.nn as nn
from inference.manganinjia_pipeline import MangaNinjiaPipeline
from diffusers import (
ControlNetModel,
DiffusionPipeline,
DDIMScheduler,
AutoencoderKL,
)
from src.models.mutual_self_attention_multi_scale import ReferenceAttentionControl
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.refunet_2d_condition import RefUNet2DConditionModel
from src.point_network import PointNet
from src.annotator.lineart import BatchLineartDetector
val_configs = OmegaConf.load('./configs/inference.yaml')
# download the checkpoints
from huggingface_hub import snapshot_download, hf_hub_download
os.makedirs("checkpoints", exist_ok=True)
# List of subdirectories to create inside "checkpoints"
subfolders = [
"StableDiffusion",
"models",
"MangaNinjia"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True)
# List of subdirectories to create inside "models"
models_subfolders = [
"clip-vit-large-patch14",
"control_v11p_sd15_lineart",
"Annotators"
]
# Create each subdirectory
for subfolder in models_subfolders:
os.makedirs(os.path.join("checkpoints/models", subfolder), exist_ok=True)
snapshot_download(
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5",
local_dir = "./checkpoints/StableDiffusion"
)
snapshot_download(
repo_id = "openai/clip-vit-large-patch14",
local_dir = "./checkpoints/models/clip-vit-large-patch14"
)
snapshot_download(
repo_id = "lllyasviel/control_v11p_sd15_lineart",
local_dir = "./checkpoints/models/control_v11p_sd15_lineart"
)
hf_hub_download(
repo_id = "lllyasviel/Annotators",
filename = "sk_model.pth",
local_dir = "./checkpoints/models/Annotators"
)
snapshot_download(
repo_id = "Johanan0528/MangaNinjia",
local_dir = "./checkpoints/MangaNinjia"
)
# === load the checkpoint ===
pretrained_model_name_or_path = val_configs.model_path.pretrained_model_name_or_path
refnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_clip_vision_encoder_path = val_configs.model_path.clip_vision_encoder_path
controlnet_model_name_or_path = val_configs.model_path.controlnet_model_name
annotator_ckpts_path = val_configs.model_path.annotator_ckpts_path
output_root = val_configs.inference_config.output_path
device = val_configs.inference_config.device
preprocessor = BatchLineartDetector(annotator_ckpts_path)
in_channels_reference_unet = 4
in_channels_denoising_unet = 4
in_channels_controlnet = 4
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_name_or_path,subfolder='scheduler')
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path,
subfolder='vae'
)
denoising_unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_denoising_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
reference_unet = RefUNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,subfolder="unet",
in_channels=in_channels_reference_unet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
refnet_tokenizer = CLIPTokenizer.from_pretrained(refnet_clip_vision_encoder_path)
refnet_text_encoder = CLIPTextModel.from_pretrained(refnet_clip_vision_encoder_path)
refnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(refnet_clip_vision_encoder_path)
controlnet = ControlNetModel.from_pretrained(
controlnet_model_name_or_path,
in_channels=in_channels_controlnet,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True
)
controlnet_tokenizer = CLIPTokenizer.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_text_encoder = CLIPTextModel.from_pretrained(controlnet_clip_vision_encoder_path)
controlnet_image_enc = CLIPVisionModelWithProjection.from_pretrained(controlnet_clip_vision_encoder_path)
point_net=PointNet()
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
controlnet.load_state_dict(
torch.load(val_configs.model_path.manga_control_model_path, map_location="cpu"),
strict=False,
)
point_net.load_state_dict(
torch.load(val_configs.model_path.point_net_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(val_configs.model_path.manga_reference_model_path, map_location="cpu"),
strict=False,
)
denoising_unet.load_state_dict(
torch.load(val_configs.model_path.manga_main_model_path, map_location="cpu"),
strict=False,
)
pipe = MangaNinjiaPipeline(
reference_unet=reference_unet,
controlnet=controlnet,
denoising_unet=denoising_unet,
vae=vae,
refnet_tokenizer=refnet_tokenizer,
refnet_text_encoder=refnet_text_encoder,
refnet_image_encoder=refnet_image_enc,
controlnet_tokenizer=controlnet_tokenizer,
controlnet_text_encoder=controlnet_text_encoder,
controlnet_image_encoder=controlnet_image_enc,
scheduler=noise_scheduler,
point_net=point_net
)
pipe = pipe.to(torch.device(device))
def string_to_np_array(coord_string):
coord_string = coord_string.strip('[]')
coords = re.findall(r'\d+', coord_string)
coords = list(map(int, coords))
coord_array = np.array(coords).reshape(-1, 2)
return coord_array
def infer_single(is_lineart, ref_image, target_image, output_coords_ref, output_coords_base, seed = -1, num_inference_steps=20, guidance_scale_ref = 9, guidance_scale_point =15 ):
"""
mask: 0/1 1-channel np.array
image: rgb np.array
"""
generator = torch.cuda.manual_seed(seed)
matrix1 = np.zeros((512, 512), dtype=np.uint8)
matrix2 = np.zeros((512, 512), dtype=np.uint8)
output_coords_ref = string_to_np_array(output_coords_ref)
output_coords_base = string_to_np_array(output_coords_base)
for index, (coords_ref,coords_base) in enumerate(zip(output_coords_ref,output_coords_base)):
y1, x1 = coords_ref
y2, x2 = coords_base
matrix1[y1, x1] = index + 1
matrix2[y2, x2] = index + 1
point_ref = torch.from_numpy(matrix1).unsqueeze(0).unsqueeze(0)
point_main = torch.from_numpy(matrix2).unsqueeze(0).unsqueeze(0)
preprocessor.to(device,dtype=torch.float32)
pipe_out = pipe(
is_lineart,
ref_image,
target_image,
target_image,
denosing_steps=num_inference_steps,
processing_res=512,
match_input_res=True,
batch_size=1,
show_progress_bar=True,
guidance_scale_ref=guidance_scale_ref,
guidance_scale_point=guidance_scale_point,
preprocessor=preprocessor,
generator=generator,
point_ref=point_ref,
point_main=point_main,
)
return pipe_out
def inference_single_image(ref_image,
tar_image,
ddim_steps,
scale_ref,
scale_point,
seed,
output_coords1,
output_coords2,
is_lineart
):
if seed == -1:
seed = np.random.randint(10000)
pipe_out = infer_single(is_lineart, ref_image, tar_image, output_coords_ref=output_coords1, output_coords_base=output_coords2,seed=seed ,num_inference_steps=ddim_steps, guidance_scale_ref = scale_ref, guidance_scale_point = scale_point
)
return pipe_out
clicked_points_img1 = []
clicked_points_img2 = []
current_img_idx = 0
max_clicks = 14
point_size = 8
colors = [(255, 0, 0), (0, 255, 0)]
# Process images: resizing them to 512x512
def process_image(ref, base):
ref_resized = cv2.resize(ref, (512, 512)) # Note OpenCV resize order is (width, height)
base_resized = cv2.resize(base, (512, 512))
return ref_resized, base_resized
# Convert string to numpy array of coordinates
def string_to_np_array(coord_string):
coord_string = coord_string.strip('[]')
coords = re.findall(r'\d+', coord_string)
coords = list(map(int, coords))
coord_array = np.array(coords).reshape(-1, 2)
return coord_array
# Function to handle click events
def get_select_coords(img1, img2, evt: gr.SelectData):
global clicked_points_img1, clicked_points_img2, current_img_idx
click_coords = (evt.index[1], evt.index[0])
if current_img_idx == 0:
clicked_points_img1.append(click_coords)
if len(clicked_points_img1) > max_clicks:
clicked_points_img1 = []
current_img = img1
clicked_points = clicked_points_img1
else:
clicked_points_img2.append(click_coords)
if len(clicked_points_img2) > max_clicks:
clicked_points_img2 = []
current_img = img2
clicked_points = clicked_points_img2
current_img_idx = 1 - current_img_idx
img_pil = Image.fromarray(current_img.astype('uint8'))
draw = ImageDraw.Draw(img_pil)
for idx, point in enumerate(clicked_points):
x, y = point
color = colors[current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw.point((y+dy, x+dx), fill=color)
img_out = np.array(img_pil)
coord_array = np.array([(x, y) for x, y in clicked_points])
return img_out, coord_array
# Function to clear the clicked points
def undo_last_point(ref, base):
global clicked_points_img1, clicked_points_img2, current_img_idx
current_img_idx=1-current_img_idx
if current_img_idx == 0 and clicked_points_img1:
clicked_points_img1.pop() # Undo last point in ref
elif current_img_idx == 1 and clicked_points_img2:
clicked_points_img2.pop() # Undo last point in base
# After removing the last point, redraw the image without it
if current_img_idx == 0:
current_img = ref
current_img_other = base
clicked_points = clicked_points_img1
clicked_points_other = clicked_points_img2
else:
current_img = base
current_img_other = ref
clicked_points = clicked_points_img2
clicked_points_other = clicked_points_img1
# Redraw the image without the last point
img_pil = Image.fromarray(current_img.astype('uint8'))
draw = ImageDraw.Draw(img_pil)
for idx, point in enumerate(clicked_points):
x, y = point
color = colors[current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw.point((y+dy, x+dx), fill=color)
img_out = np.array(img_pil)
img_pil_other = Image.fromarray(current_img_other.astype('uint8'),)
draw_other = ImageDraw.Draw(img_pil_other)
for idx, point in enumerate(clicked_points_other):
x, y = point
color = colors[1-current_img_idx]
for dx in range(-point_size, point_size + 1):
for dy in range(-point_size, point_size + 1):
if 0 <= y + dy < img_pil.size[0] and 0 <= x + dx < img_pil.size[1]:
draw_other.point((y+dy, x+dx), fill=color)
img_out_other = np.array(img_pil_other)
coord_array = np.array([(x, y) for x, y in clicked_points])
# Return the updated image and coordinates as text
updated_coords = str(coord_array.tolist())
# If current_img_idx is 0, it means we are working with ref, so return for ref
if current_img_idx == 0:
coord_array2 = np.array([(x, y) for x, y in clicked_points_img2])
updated_coords2 = str(coord_array2.tolist())
return img_out, updated_coords, img_out_other, updated_coords2 # for ref image
else:
coord_array1 = np.array([(x, y) for x, y in clicked_points_img1])
updated_coords1 = str(coord_array1.tolist())
return img_out_other, updated_coords1, img_out, updated_coords # for base image
# Main function to run the image processing
@spaces.GPU
def run_local(ref, base, *args, progress=gr.Progress(track_tqdm=True)):
image = Image.fromarray(base)
ref_image = Image.fromarray(ref)
pipe_out = inference_single_image(ref_image.copy(), image.copy(), *args)
to_save_dict = pipe_out.to_save_dict
to_save_dict['edit2'] = pipe_out.img_pil
return [to_save_dict['edit2'], to_save_dict['edge2_black']]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# MangaNinja: Line Art Colorization with Precise Reference Following")
with gr.Row():
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", columns=1, height=768)
with gr.Accordion("Advanced Option", open=True):
num_samples = 1
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
scale_ref = gr.Slider(label="Guidance of ref", minimum=0, maximum=30.0, value=9, step=0.1)
scale_point = gr.Slider(label="Guidance of points", minimum=0, maximum=30.0, value=15, step=0.1)
is_lineart = gr.Checkbox(label="Input is lineart", value=False)
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=-1)
gr.Markdown("### Tutorial")
gr.Markdown("1. Upload the reference image and target image. Note that for the target image, there are two modes: you can upload an RGB image, and the model will automatically extract the line art; or you can directly upload the line art by checking the 'input is lineart' option.")
gr.Markdown("2. Click 'Process Images' to resize the images to 512*512 resolution.")
gr.Markdown("3. (Optional) **Starting from the reference image**, **alternately** click on the reference and target images in sequence to define matching points. Use 'Undo' to revert the last action.")
gr.Markdown("4. Click 'Generate' to produce the result.")
gr.Markdown("# Upload the reference image and target image")
with gr.Row():
ref = gr.Image(label="Reference Image",)
base = gr.Image(label="Target Image",)
gr.Button("Process Images").click(process_image, inputs=[ref, base], outputs=[ref, base])
with gr.Row():
output_img1 = gr.Image(label="Reference Output")
output_coords1 = gr.Textbox(lines=2, label="Clicked Coordinates Image 1 (npy format)")
output_img2 = gr.Image(label="Base Output")
output_coords2 = gr.Textbox(lines=2, label="Clicked Coordinates Image 2 (npy format)")
# Image click select functions
ref.select(get_select_coords, [ref, base], [output_img1, output_coords1])
base.select(get_select_coords, [ref, base], [output_img2, output_coords2])
# Undo button
undo_button = gr.Button("Undo")
undo_button.click(undo_last_point, inputs=[ref, base], outputs=[output_img1, output_coords1, output_img2, output_coords2])
run_local_button = gr.Button("Generate")
with gr.Row():
gr.Examples(
examples=[
['test_cases/hz0.png', 'test_cases/manga_target_examples/target_1.jpg'],
['test_cases/more_cases/az0.png', 'test_cases/manga_target_examples/target_2.jpg'],
['test_cases/more_cases/hi0.png', 'test_cases/manga_target_examples/target_3.jpg'],
['test_cases/more_cases/kn0.jpg', 'test_cases/manga_target_examples/target_4.jpg'],
['test_cases/more_cases/rk0.jpg', 'test_cases/manga_target_examples/target_5.jpg'],
],
inputs=[ref, base],
cache_examples=False,
examples_per_page=100
)
run_local_button.click(fn=run_local,
inputs=[ref,
base,
ddim_steps,
scale_ref,
scale_point,
seed,
output_coords1,
output_coords2,
is_lineart
],
outputs=[baseline_gallery]
)
demo.launch(show_api=False, show_error=True)
|