Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
|
6 |
+
import imageio
|
7 |
+
import torch
|
8 |
+
from diffusers import PNDMScheduler
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from torchvision.utils import save_image
|
11 |
+
from diffusers.models import AutoencoderKL
|
12 |
+
from datetime import datetime
|
13 |
+
from typing import List, Union
|
14 |
+
import gradio as gr
|
15 |
+
import numpy as np
|
16 |
+
from gradio.components import Textbox, Video, Image
|
17 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
18 |
+
|
19 |
+
from opensora.models.ae import ae_stride_config, getae, getae_wrapper
|
20 |
+
from opensora.models.ae.videobase import CausalVQVAEModelWrapper, CausalVAEModelWrapper
|
21 |
+
from opensora.models.diffusion.latte.modeling_latte import LatteT2V
|
22 |
+
from opensora.sample.pipeline_videogen import VideoGenPipeline
|
23 |
+
from opensora.serve.gradio_utils import block_css, title_markdown, randomize_seed_fn, set_env, examples, DESCRIPTION
|
24 |
+
|
25 |
+
import spaces
|
26 |
+
|
27 |
+
@spaces.GPU
|
28 |
+
def generate_img(prompt, sample_steps, scale, seed=0, randomize_seed=False, force_images=False):
|
29 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
30 |
+
set_env(seed)
|
31 |
+
video_length = transformer_model.config.video_length if not force_images else 1
|
32 |
+
height, width = int(args.version.split('x')[1]), int(args.version.split('x')[2])
|
33 |
+
num_frames = 1 if video_length == 1 else int(args.version.split('x')[0])
|
34 |
+
videos = videogen_pipeline(prompt,
|
35 |
+
video_length=video_length,
|
36 |
+
height=height,
|
37 |
+
width=width,
|
38 |
+
num_inference_steps=sample_steps,
|
39 |
+
guidance_scale=scale,
|
40 |
+
enable_temporal_attentions=not force_images,
|
41 |
+
num_images_per_prompt=1,
|
42 |
+
mask_feature=True,
|
43 |
+
).video
|
44 |
+
|
45 |
+
torch.cuda.empty_cache()
|
46 |
+
videos = videos[0]
|
47 |
+
tmp_save_path = 'tmp.mp4'
|
48 |
+
imageio.mimwrite(tmp_save_path, videos, fps=24, quality=9) # highest quality is 10, lowest is 0
|
49 |
+
display_model_info = f"Video size: {num_frames}×{height}×{width}, \nSampling Step: {sample_steps}, \nGuidance Scale: {scale}"
|
50 |
+
return tmp_save_path, prompt, display_model_info, seed
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
args = type('args', (), {
|
54 |
+
'ae': 'CausalVAEModel_4x8x8',
|
55 |
+
'force_images': False,
|
56 |
+
'model_path': 'LanguageBind/Open-Sora-Plan-v1.0.0',
|
57 |
+
'text_encoder_name': 'DeepFloyd/t5-v1_1-xxl',
|
58 |
+
'version': '65x512x512'
|
59 |
+
})
|
60 |
+
device = torch.device('cuda:0')
|
61 |
+
|
62 |
+
# Load model:
|
63 |
+
transformer_model = LatteT2V.from_pretrained(args.model_path, subfolder=args.version, torch_dtype=torch.float16, cache_dir='cache_dir').to(device)
|
64 |
+
|
65 |
+
vae = getae_wrapper(args.ae)(args.model_path, subfolder="vae", cache_dir='cache_dir').to(device, dtype=torch.float16)
|
66 |
+
vae.vae.enable_tiling()
|
67 |
+
image_size = int(args.version.split('x')[1])
|
68 |
+
latent_size = (image_size // ae_stride_config[args.ae][1], image_size // ae_stride_config[args.ae][2])
|
69 |
+
vae.latent_size = latent_size
|
70 |
+
transformer_model.force_images = args.force_images
|
71 |
+
tokenizer = T5Tokenizer.from_pretrained(args.text_encoder_name, cache_dir="cache_dir")
|
72 |
+
text_encoder = T5EncoderModel.from_pretrained(args.text_encoder_name, cache_dir="cache_dir",
|
73 |
+
torch_dtype=torch.float16).to(device)
|
74 |
+
|
75 |
+
# set eval mode
|
76 |
+
transformer_model.eval()
|
77 |
+
vae.eval()
|
78 |
+
text_encoder.eval()
|
79 |
+
scheduler = PNDMScheduler()
|
80 |
+
videogen_pipeline = VideoGenPipeline(vae=vae,
|
81 |
+
text_encoder=text_encoder,
|
82 |
+
tokenizer=tokenizer,
|
83 |
+
scheduler=scheduler,
|
84 |
+
transformer=transformer_model).to(device=device)
|
85 |
+
|
86 |
+
|
87 |
+
demo = gr.Interface(
|
88 |
+
fn=generate_img,
|
89 |
+
inputs=[Textbox(label="",
|
90 |
+
placeholder="Please enter your prompt. \n"),
|
91 |
+
gr.Slider(
|
92 |
+
label='Sample Steps',
|
93 |
+
minimum=1,
|
94 |
+
maximum=500,
|
95 |
+
value=50,
|
96 |
+
step=10
|
97 |
+
),
|
98 |
+
gr.Slider(
|
99 |
+
label='Guidance Scale',
|
100 |
+
minimum=0.1,
|
101 |
+
maximum=30.0,
|
102 |
+
value=10.0,
|
103 |
+
step=0.1
|
104 |
+
),
|
105 |
+
gr.Slider(
|
106 |
+
label="Seed",
|
107 |
+
minimum=0,
|
108 |
+
maximum=203279,
|
109 |
+
step=1,
|
110 |
+
value=0,
|
111 |
+
),
|
112 |
+
gr.Checkbox(label="Randomize seed", value=True),
|
113 |
+
gr.Checkbox(label="Generate image (1 frame video)", value=False),
|
114 |
+
],
|
115 |
+
outputs=[Video(label="Vid", width=512, height=512),
|
116 |
+
Textbox(label="input prompt"),
|
117 |
+
Textbox(label="model info"),
|
118 |
+
gr.Slider(label='seed')],
|
119 |
+
title=title_markdown, description=DESCRIPTION, theme=gr.themes.Default(), css=block_css,
|
120 |
+
examples=examples,
|
121 |
+
cache_examples=False
|
122 |
+
)
|
123 |
+
demo.launch()
|