Spaces:
Sleeping
Sleeping
| // Copyright (c) Meta Platforms, Inc. and affiliates. | |
| // All rights reserved. | |
| // This source code is licensed under the license found in the | |
| // LICENSE file in the root directory of this source tree. | |
| // adapted from https://github.com/zsef123/Connected_components_PyTorch | |
| // with license found in the LICENSE_cctorch file in the root directory. | |
| // 2d | |
| namespace cc2d { | |
| template <typename T> | |
| __device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) { | |
| return (bitmap >> pos) & 1; | |
| } | |
| __device__ int32_t find(const int32_t* s_buf, int32_t n) { | |
| while (s_buf[n] != n) | |
| n = s_buf[n]; | |
| return n; | |
| } | |
| __device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) { | |
| const int32_t id = n; | |
| while (s_buf[n] != n) { | |
| n = s_buf[n]; | |
| s_buf[id] = n; | |
| } | |
| return n; | |
| } | |
| __device__ void union_(int32_t* s_buf, int32_t a, int32_t b) { | |
| bool done; | |
| do { | |
| a = find(s_buf, a); | |
| b = find(s_buf, b); | |
| if (a < b) { | |
| int32_t old = atomicMin(s_buf + b, a); | |
| done = (old == b); | |
| b = old; | |
| } else if (b < a) { | |
| int32_t old = atomicMin(s_buf + a, b); | |
| done = (old == a); | |
| a = old; | |
| } else | |
| done = true; | |
| } while (!done); | |
| } | |
| __global__ void | |
| init_labeling(int32_t* label, const uint32_t W, const uint32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
| const uint32_t idx = row * W + col; | |
| if (row < H && col < W) | |
| label[idx] = idx; | |
| } | |
| __global__ void | |
| merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
| const uint32_t idx = row * W + col; | |
| if (row >= H || col >= W) | |
| return; | |
| uint32_t P = 0; | |
| if (img[idx]) | |
| P |= 0x777; | |
| if (row + 1 < H && img[idx + W]) | |
| P |= 0x777 << 4; | |
| if (col + 1 < W && img[idx + 1]) | |
| P |= 0x777 << 1; | |
| if (col == 0) | |
| P &= 0xEEEE; | |
| if (col + 1 >= W) | |
| P &= 0x3333; | |
| else if (col + 2 >= W) | |
| P &= 0x7777; | |
| if (row == 0) | |
| P &= 0xFFF0; | |
| if (row + 1 >= H) | |
| P &= 0xFF; | |
| if (P > 0) { | |
| // If need check about top-left pixel(if flag the first bit) and hit the | |
| // top-left pixel | |
| if (hasBit(P, 0) && img[idx - W - 1]) { | |
| union_(label, idx, idx - 2 * W - 2); // top left block | |
| } | |
| if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1])) | |
| union_(label, idx, idx - 2 * W); // top bottom block | |
| if (hasBit(P, 3) && img[idx + 2 - W]) | |
| union_(label, idx, idx - 2 * W + 2); // top right block | |
| if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1])) | |
| union_(label, idx, idx - 2); // just left block | |
| } | |
| } | |
| __global__ void compression(int32_t* label, const int32_t W, const int32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
| const uint32_t idx = row * W + col; | |
| if (row < H && col < W) | |
| find_n_compress(label, idx); | |
| } | |
| __global__ void final_labeling( | |
| const uint8_t* img, | |
| int32_t* label, | |
| const int32_t W, | |
| const int32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2; | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2; | |
| const uint32_t idx = row * W + col; | |
| if (row >= H || col >= W) | |
| return; | |
| int32_t y = label[idx] + 1; | |
| if (img[idx]) | |
| label[idx] = y; | |
| else | |
| label[idx] = 0; | |
| if (col + 1 < W) { | |
| if (img[idx + 1]) | |
| label[idx + 1] = y; | |
| else | |
| label[idx + 1] = 0; | |
| if (row + 1 < H) { | |
| if (img[idx + W + 1]) | |
| label[idx + W + 1] = y; | |
| else | |
| label[idx + W + 1] = 0; | |
| } | |
| } | |
| if (row + 1 < H) { | |
| if (img[idx + W]) | |
| label[idx + W] = y; | |
| else | |
| label[idx + W] = 0; | |
| } | |
| } | |
| __global__ void init_counting( | |
| const int32_t* label, | |
| int32_t* count_init, | |
| const int32_t W, | |
| const int32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); | |
| const uint32_t idx = row * W + col; | |
| if (row >= H || col >= W) | |
| return; | |
| int32_t y = label[idx]; | |
| if (y > 0) { | |
| int32_t count_idx = y - 1; | |
| atomicAdd(count_init + count_idx, 1); | |
| } | |
| } | |
| __global__ void final_counting( | |
| const int32_t* label, | |
| const int32_t* count_init, | |
| int32_t* count_final, | |
| const int32_t W, | |
| const int32_t H) { | |
| const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y); | |
| const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x); | |
| const uint32_t idx = row * W + col; | |
| if (row >= H || col >= W) | |
| return; | |
| int32_t y = label[idx]; | |
| if (y > 0) { | |
| int32_t count_idx = y - 1; | |
| count_final[idx] = count_init[count_idx]; | |
| } else { | |
| count_final[idx] = 0; | |
| } | |
| } | |
| } // namespace cc2d | |
| std::vector<torch::Tensor> get_connected_componnets( | |
| const torch::Tensor& inputs) { | |
| AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor"); | |
| AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape"); | |
| AT_ASSERTM( | |
| inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type"); | |
| const uint32_t N = inputs.size(0); | |
| const uint32_t C = inputs.size(1); | |
| const uint32_t H = inputs.size(2); | |
| const uint32_t W = inputs.size(3); | |
| AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape"); | |
| AT_ASSERTM((H % 2) == 0, "height must be an even number"); | |
| AT_ASSERTM((W % 2) == 0, "width must be an even number"); | |
| // label must be uint32_t | |
| auto label_options = | |
| torch::TensorOptions().dtype(torch::kInt32).device(inputs.device()); | |
| torch::Tensor labels = torch::zeros({N, C, H, W}, label_options); | |
| torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options); | |
| torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options); | |
| dim3 grid = dim3( | |
| ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS, | |
| ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS); | |
| dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS); | |
| dim3 grid_count = | |
| dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS); | |
| dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS); | |
| cudaStream_t stream = at::cuda::getCurrentCUDAStream(); | |
| for (int n = 0; n < N; n++) { | |
| uint32_t offset = n * H * W; | |
| cc2d::init_labeling<<<grid, block, 0, stream>>>( | |
| labels.data_ptr<int32_t>() + offset, W, H); | |
| cc2d::merge<<<grid, block, 0, stream>>>( | |
| inputs.data_ptr<uint8_t>() + offset, | |
| labels.data_ptr<int32_t>() + offset, | |
| W, | |
| H); | |
| cc2d::compression<<<grid, block, 0, stream>>>( | |
| labels.data_ptr<int32_t>() + offset, W, H); | |
| cc2d::final_labeling<<<grid, block, 0, stream>>>( | |
| inputs.data_ptr<uint8_t>() + offset, | |
| labels.data_ptr<int32_t>() + offset, | |
| W, | |
| H); | |
| // get the counting of each pixel | |
| cc2d::init_counting<<<grid_count, block_count, 0, stream>>>( | |
| labels.data_ptr<int32_t>() + offset, | |
| counts_init.data_ptr<int32_t>() + offset, | |
| W, | |
| H); | |
| cc2d::final_counting<<<grid_count, block_count, 0, stream>>>( | |
| labels.data_ptr<int32_t>() + offset, | |
| counts_init.data_ptr<int32_t>() + offset, | |
| counts_final.data_ptr<int32_t>() + offset, | |
| W, | |
| H); | |
| } | |
| // returned values are [labels, counts] | |
| std::vector<torch::Tensor> outputs; | |
| outputs.push_back(labels); | |
| outputs.push_back(counts_final); | |
| return outputs; | |
| } | |
| PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { | |
| m.def( | |
| "get_connected_componnets", | |
| &get_connected_componnets, | |
| "get_connected_componnets"); | |
| } | |