fffiloni's picture
Update app.py
7f07a26
raw
history blame
5.95 kB
import gradio as gr
from huggingface_hub import login
import os
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
device="cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
def load_model(custom_model, weight_name):
if custom_model == "":
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
raise gr.Error("You forgot to define Model ID.")
# This is where you load your trained weights
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
return "Model loaded!"
def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(
prompt=prompt,
num_inference_steps=inf_steps,
guidance_scale = guidance_scale,
generator=generator,
cross_attention_kwargs={"scale": lora_weight}
).images[0]
return image
css="""
#col-container{
margin: 0 auto;
max-width: 680px;
text-align: left;
}
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 10px 5px;
margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Note: you might want to use a private custom LoRa model</h2>
<p class="main-message">
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
</p>
<p class="actions">
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start using private models and skip the queue
</p>
</div>
''', elem_id="warning-duplicate")
gr.HTML("""
<h2 style="text-align: center;">SD-XL Custom Model Inference</h2>
<p style="text-align: center;">Use this demo to check results from your previously trained LoRa model.</p>
""")
with gr.Row():
with gr.Column():
custom_model = gr.Textbox(label="Your custom model ID", placeholder="your_username/your_trained_model_name", info="Make sure your model is set to PUBLIC ")
weight_name = gr.Textbox(label="Safetensors file", value="pytorch_lora_weights.safetensors", info="specify which one if model has several .safetensors files")
with gr.Column():
load_model_btn = gr.Button("Load my model")
model_status = gr.Textbox(label="model status", interactive=False)
prompt_in = gr.Textbox(label="Prompt")
with gr.Row():
inf_steps = gr.Slider(
label="Inference steps",
minimum=12,
maximum=50,
step=1,
value=25
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=50.0,
step=0.1,
value=7.5
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=500000,
step=1,
value=42
)
lora_weight = gr.Slider(
label="LoRa weigth",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.9
)
submit_btn = gr.Button("Submit")
image_out = gr.Image(label="Image output")
load_model_btn.click(
fn = load_model,
inputs=[custom_model, weight_name],
outputs = [model_status]
)
submit_btn.click(
fn = infer,
inputs = [prompt_in, inf_steps, guidance_scale, seed, lora_weight],
outputs = [image_out]
)
demo.queue().launch()