Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import login | |
import os | |
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderKL | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, torch_dtype=torch.float16, variant="fp16", | |
use_safetensors=True | |
) | |
device="cuda" if torch.cuda.is_available() else "cpu" | |
pipe.to(device) | |
def load_model(custom_model, weight_name): | |
if custom_model == "": | |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") | |
raise gr.Error("You forgot to define Model ID.") | |
# This is where you load your trained weights | |
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True) | |
return "Model loaded!" | |
def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)): | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
num_inference_steps=inf_steps, | |
guidance_scale = guidance_scale, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_weight} | |
).images[0] | |
return image | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 680px; | |
text-align: left; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 10px 5px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
if is_shared_ui: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
Note: you might want to use a private custom LoRa model</h2> | |
<p class="main-message"> | |
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> | |
</p> | |
<p class="actions"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
</a> | |
to start using private models and skip the queue | |
</p> | |
</div> | |
''', elem_id="warning-duplicate") | |
gr.HTML(""" | |
<h2 style="text-align: center;">SD-XL Custom Model Inference</h2> | |
<p style="text-align: center;">Use this demo to check results from your previously trained LoRa model.</p> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
custom_model = gr.Textbox(label="Your custom model ID", placeholder="your_username/your_trained_model_name", info="Make sure your model is set to PUBLIC ") | |
weight_name = gr.Textbox(label="Safetensors file", value="pytorch_lora_weights.safetensors", info="specify which one if model has several .safetensors files") | |
with gr.Column(): | |
load_model_btn = gr.Button("Load my model") | |
model_status = gr.Textbox(label="model status", interactive=False) | |
prompt_in = gr.Textbox(label="Prompt") | |
with gr.Row(): | |
inf_steps = gr.Slider( | |
label="Inference steps", | |
minimum=12, | |
maximum=50, | |
step=1, | |
value=25 | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=50.0, | |
step=0.1, | |
value=7.5 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=500000, | |
step=1, | |
value=42 | |
) | |
lora_weight = gr.Slider( | |
label="LoRa weigth", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.9 | |
) | |
submit_btn = gr.Button("Submit") | |
image_out = gr.Image(label="Image output") | |
load_model_btn.click( | |
fn = load_model, | |
inputs=[custom_model, weight_name], | |
outputs = [model_status] | |
) | |
submit_btn.click( | |
fn = infer, | |
inputs = [prompt_in, inf_steps, guidance_scale, seed, lora_weight], | |
outputs = [image_out] | |
) | |
demo.queue().launch() |