Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import login | |
| import os | |
| is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False | |
| hf_token = os.environ.get("HF_TOKEN") | |
| login(token=hf_token) | |
| import torch | |
| from diffusers import DiffusionPipeline, AutoencoderKL | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| vae=vae, torch_dtype=torch.float16, variant="fp16", | |
| use_safetensors=True | |
| ) | |
| device="cuda" if torch.cuda.is_available() else "cpu" | |
| pipe.to(device) | |
| def load_model(custom_model, weight_name): | |
| if custom_model == "": | |
| gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.") | |
| raise gr.Error("You forgot to define Model ID.") | |
| # This is where you load your trained weights | |
| pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True) | |
| return "Model loaded!" | |
| def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)): | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| num_inference_steps=inf_steps, | |
| guidance_scale = guidance_scale, | |
| generator=generator, | |
| cross_attention_kwargs={"scale": lora_weight} | |
| ).images[0] | |
| return image | |
| css=""" | |
| #col-container{ | |
| margin: 0 auto; | |
| max-width: 680px; | |
| text-align: left; | |
| } | |
| div#warning-duplicate { | |
| background-color: #ebf5ff; | |
| padding: 0 10px 5px; | |
| margin: 20px 0; | |
| } | |
| div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
| color: #0f4592!important; | |
| } | |
| div#warning-duplicate strong { | |
| color: #0f4592; | |
| } | |
| p.actions { | |
| display: flex; | |
| align-items: center; | |
| margin: 20px 0; | |
| } | |
| div#warning-duplicate .actions a { | |
| display: inline-block; | |
| margin-right: 10px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| if is_shared_ui: | |
| top_description = gr.HTML(f''' | |
| <div class="gr-prose"> | |
| <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
| Note: you might want to use a private custom LoRa model</h2> | |
| <p class="main-message"> | |
| To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> | |
| </p> | |
| <p class="actions"> | |
| <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
| </a> | |
| to start using private models and skip the queue | |
| </p> | |
| </div> | |
| ''', elem_id="warning-duplicate") | |
| gr.HTML(""" | |
| <h2 style="text-align: center;">SD-XL Custom Model Inference</h2> | |
| <p style="text-align: center;">Use this demo to check results from your previously trained LoRa model.</p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| custom_model = gr.Textbox(label="Your custom model ID", placeholder="your_username/your_trained_model_name", info="Make sure your model is set to PUBLIC ") | |
| weight_name = gr.Textbox(label="Safetensors file", value="pytorch_lora_weights.safetensors", info="specify which one if model has several .safetensors files") | |
| with gr.Column(): | |
| load_model_btn = gr.Button("Load my model") | |
| model_status = gr.Textbox(label="model status", interactive=False) | |
| prompt_in = gr.Textbox(label="Prompt") | |
| with gr.Row(): | |
| inf_steps = gr.Slider( | |
| label="Inference steps", | |
| minimum=12, | |
| maximum=50, | |
| step=1, | |
| value=25 | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=50.0, | |
| step=0.1, | |
| value=7.5 | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=500000, | |
| step=1, | |
| value=42 | |
| ) | |
| lora_weight = gr.Slider( | |
| label="LoRa weigth", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.01, | |
| value=0.9 | |
| ) | |
| submit_btn = gr.Button("Submit") | |
| image_out = gr.Image(label="Image output") | |
| load_model_btn.click( | |
| fn = load_model, | |
| inputs=[custom_model, weight_name], | |
| outputs = [model_status] | |
| ) | |
| submit_btn.click( | |
| fn = infer, | |
| inputs = [prompt_in, inf_steps, guidance_scale, seed, lora_weight], | |
| outputs = [image_out] | |
| ) | |
| demo.queue().launch() |