Spaces:
Sleeping
Sleeping
added auto filled sfts + trigger word
Browse files
app.py
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import login
|
| 3 |
import os
|
|
|
|
| 4 |
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
|
| 5 |
hf_token = os.environ.get("HF_TOKEN")
|
| 6 |
login(token=hf_token)
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
import torch
|
| 9 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 10 |
|
|
@@ -13,25 +17,64 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
|
|
| 13 |
pipe = DiffusionPipeline.from_pretrained(
|
| 14 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 15 |
vae=vae, torch_dtype=torch.float16, variant="fp16",
|
| 16 |
-
use_safetensors=True
|
| 17 |
)
|
| 18 |
|
| 19 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
|
| 21 |
pipe.to(device)
|
| 22 |
|
| 23 |
-
def load_model(custom_model
|
| 24 |
-
|
| 25 |
if custom_model == "":
|
| 26 |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
| 27 |
raise gr.Error("You forgot to define Model ID.")
|
| 28 |
-
|
| 29 |
-
# This is where you load your trained weights
|
| 30 |
-
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
|
| 31 |
-
|
| 32 |
-
return "Model loaded!"
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 37 |
|
|
@@ -97,11 +140,34 @@ with gr.Blocks(css=css) as demo:
|
|
| 97 |
""")
|
| 98 |
with gr.Row():
|
| 99 |
with gr.Column():
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
with gr.Column():
|
| 103 |
load_model_btn = gr.Button("Load my model")
|
| 104 |
-
|
| 105 |
|
| 106 |
prompt_in = gr.Textbox(label="Prompt")
|
| 107 |
with gr.Row():
|
|
@@ -121,10 +187,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 121 |
)
|
| 122 |
seed = gr.Slider(
|
| 123 |
label="Seed",
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
step=1,
|
| 127 |
-
value
|
| 128 |
)
|
| 129 |
lora_weight = gr.Slider(
|
| 130 |
label="LoRa weigth",
|
|
@@ -138,12 +205,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 138 |
|
| 139 |
load_model_btn.click(
|
| 140 |
fn = load_model,
|
| 141 |
-
inputs=[custom_model
|
| 142 |
-
outputs = [model_status]
|
| 143 |
)
|
| 144 |
submit_btn.click(
|
| 145 |
fn = infer,
|
| 146 |
-
inputs = [prompt_in, inf_steps, guidance_scale, seed, lora_weight],
|
| 147 |
outputs = [image_out]
|
| 148 |
)
|
| 149 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
|
| 3 |
import os
|
| 4 |
+
|
| 5 |
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
|
| 6 |
hf_token = os.environ.get("HF_TOKEN")
|
| 7 |
login(token=hf_token)
|
| 8 |
|
| 9 |
+
fs = HfFileSystem(token=hf_token)
|
| 10 |
+
api = HfApi()
|
| 11 |
+
|
| 12 |
import torch
|
| 13 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 14 |
|
|
|
|
| 17 |
pipe = DiffusionPipeline.from_pretrained(
|
| 18 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 19 |
vae=vae, torch_dtype=torch.float16, variant="fp16",
|
| 20 |
+
#use_safetensors=True
|
| 21 |
)
|
| 22 |
|
| 23 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
|
| 25 |
pipe.to(device)
|
| 26 |
|
| 27 |
+
def load_model(custom_model):
|
| 28 |
+
|
| 29 |
if custom_model == "":
|
| 30 |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
| 31 |
raise gr.Error("You forgot to define Model ID.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Get instance_prompt a.k.a trigger word
|
| 34 |
+
card = ModelCard.load(custom_model)
|
| 35 |
+
repo_data = card.data.to_dict()
|
| 36 |
+
instance_prompt = repo_data.get("instance_prompt")
|
| 37 |
+
|
| 38 |
+
if instance_prompt is not None:
|
| 39 |
+
print(f"Trigger word: {instance_prompt}")
|
| 40 |
+
else:
|
| 41 |
+
instance_prompt = "no trigger word needed"
|
| 42 |
+
print(f"Trigger word: no trigger word needed")
|
| 43 |
+
|
| 44 |
+
# List all ".safetensors" files in repo
|
| 45 |
+
sfts_available_files = fs.glob(f"{custom_model}/*safetensors")
|
| 46 |
+
sfts_available_files = get_files(sfts_available_files)
|
| 47 |
+
|
| 48 |
+
if sfts_available_files == []:
|
| 49 |
+
sfts_available_files = ["NO SAFETENSORS FILE"]
|
| 50 |
+
|
| 51 |
+
print(f"Safetensors available: {sfts_available_files}")
|
| 52 |
+
|
| 53 |
+
return gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def infer (custom_model, weight_name, prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
|
| 58 |
+
|
| 59 |
+
if weight_name == "NO SAFETENSORS FILE":
|
| 60 |
+
pipe.load_lora_weights(
|
| 61 |
+
custom_model,
|
| 62 |
+
low_cpu_mem_usage = True,
|
| 63 |
+
use_auth_token = True
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
else:
|
| 67 |
+
pipe.load_lora_weights(
|
| 68 |
+
custom_model,
|
| 69 |
+
weight_name = weight_name,
|
| 70 |
+
low_cpu_mem_usage = True,
|
| 71 |
+
use_auth_token = True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
pipe.fuse_lora(lora_weight)
|
| 75 |
+
|
| 76 |
+
if seed < 0 :
|
| 77 |
+
seed = random.randint(0, 423538377342)
|
| 78 |
|
| 79 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 80 |
|
|
|
|
| 140 |
""")
|
| 141 |
with gr.Row():
|
| 142 |
with gr.Column():
|
| 143 |
+
if not is_shared_ui:
|
| 144 |
+
your_username = api.whoami()["name"]
|
| 145 |
+
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
|
| 146 |
+
model_names = [item.modelId for item in my_models]
|
| 147 |
+
|
| 148 |
+
if not is_shared_ui:
|
| 149 |
+
custom_model = gr.Dropdown(
|
| 150 |
+
label = "Your custom model ID",
|
| 151 |
+
choices = model_names,
|
| 152 |
+
allow_custom_value = True
|
| 153 |
+
#placeholder = "username/model_id"
|
| 154 |
+
)
|
| 155 |
+
else:
|
| 156 |
+
custom_model = gr.Textbox(
|
| 157 |
+
label="Your custom model ID",
|
| 158 |
+
placeholder="your_username/your_trained_model_name",
|
| 159 |
+
info="Make sure your model is set to PUBLIC"
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
weight_name = gr.Dropdown(
|
| 163 |
+
label="Safetensors file",
|
| 164 |
+
#value="pytorch_lora_weights.safetensors",
|
| 165 |
+
info="specify which one if model has several .safetensors files",
|
| 166 |
+
visible = False
|
| 167 |
+
)
|
| 168 |
with gr.Column():
|
| 169 |
load_model_btn = gr.Button("Load my model")
|
| 170 |
+
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
|
| 171 |
|
| 172 |
prompt_in = gr.Textbox(label="Prompt")
|
| 173 |
with gr.Row():
|
|
|
|
| 187 |
)
|
| 188 |
seed = gr.Slider(
|
| 189 |
label="Seed",
|
| 190 |
+
info = "-1 denotes a random seed",
|
| 191 |
+
minimum=-1,
|
| 192 |
+
maximum=423538377342,
|
| 193 |
step=1,
|
| 194 |
+
value=-1
|
| 195 |
)
|
| 196 |
lora_weight = gr.Slider(
|
| 197 |
label="LoRa weigth",
|
|
|
|
| 205 |
|
| 206 |
load_model_btn.click(
|
| 207 |
fn = load_model,
|
| 208 |
+
inputs=[custom_model],
|
| 209 |
+
outputs = [model_status, weight_name, trigger_word]
|
| 210 |
)
|
| 211 |
submit_btn.click(
|
| 212 |
fn = infer,
|
| 213 |
+
inputs = [custom_model, weight_name, prompt_in, inf_steps, guidance_scale, seed, lora_weight],
|
| 214 |
outputs = [image_out]
|
| 215 |
)
|
| 216 |
|