Spaces:
Sleeping
Sleeping
added auto filled sfts + trigger word
Browse files
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import login
|
3 |
import os
|
|
|
4 |
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
|
5 |
hf_token = os.environ.get("HF_TOKEN")
|
6 |
login(token=hf_token)
|
7 |
|
|
|
|
|
|
|
8 |
import torch
|
9 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
10 |
|
@@ -13,25 +17,64 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
|
|
13 |
pipe = DiffusionPipeline.from_pretrained(
|
14 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
15 |
vae=vae, torch_dtype=torch.float16, variant="fp16",
|
16 |
-
use_safetensors=True
|
17 |
)
|
18 |
|
19 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
pipe.to(device)
|
22 |
|
23 |
-
def load_model(custom_model
|
24 |
-
|
25 |
if custom_model == "":
|
26 |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
27 |
raise gr.Error("You forgot to define Model ID.")
|
28 |
-
|
29 |
-
# This is where you load your trained weights
|
30 |
-
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
|
31 |
-
|
32 |
-
return "Model loaded!"
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
37 |
|
@@ -97,11 +140,34 @@ with gr.Blocks(css=css) as demo:
|
|
97 |
""")
|
98 |
with gr.Row():
|
99 |
with gr.Column():
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
with gr.Column():
|
103 |
load_model_btn = gr.Button("Load my model")
|
104 |
-
|
105 |
|
106 |
prompt_in = gr.Textbox(label="Prompt")
|
107 |
with gr.Row():
|
@@ -121,10 +187,11 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
)
|
122 |
seed = gr.Slider(
|
123 |
label="Seed",
|
124 |
-
|
125 |
-
|
|
|
126 |
step=1,
|
127 |
-
value
|
128 |
)
|
129 |
lora_weight = gr.Slider(
|
130 |
label="LoRa weigth",
|
@@ -138,12 +205,12 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
|
139 |
load_model_btn.click(
|
140 |
fn = load_model,
|
141 |
-
inputs=[custom_model
|
142 |
-
outputs = [model_status]
|
143 |
)
|
144 |
submit_btn.click(
|
145 |
fn = infer,
|
146 |
-
inputs = [prompt_in, inf_steps, guidance_scale, seed, lora_weight],
|
147 |
outputs = [image_out]
|
148 |
)
|
149 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
|
3 |
import os
|
4 |
+
|
5 |
is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
|
6 |
hf_token = os.environ.get("HF_TOKEN")
|
7 |
login(token=hf_token)
|
8 |
|
9 |
+
fs = HfFileSystem(token=hf_token)
|
10 |
+
api = HfApi()
|
11 |
+
|
12 |
import torch
|
13 |
from diffusers import DiffusionPipeline, AutoencoderKL
|
14 |
|
|
|
17 |
pipe = DiffusionPipeline.from_pretrained(
|
18 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
19 |
vae=vae, torch_dtype=torch.float16, variant="fp16",
|
20 |
+
#use_safetensors=True
|
21 |
)
|
22 |
|
23 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
pipe.to(device)
|
26 |
|
27 |
+
def load_model(custom_model):
|
28 |
+
|
29 |
if custom_model == "":
|
30 |
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
31 |
raise gr.Error("You forgot to define Model ID.")
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Get instance_prompt a.k.a trigger word
|
34 |
+
card = ModelCard.load(custom_model)
|
35 |
+
repo_data = card.data.to_dict()
|
36 |
+
instance_prompt = repo_data.get("instance_prompt")
|
37 |
+
|
38 |
+
if instance_prompt is not None:
|
39 |
+
print(f"Trigger word: {instance_prompt}")
|
40 |
+
else:
|
41 |
+
instance_prompt = "no trigger word needed"
|
42 |
+
print(f"Trigger word: no trigger word needed")
|
43 |
+
|
44 |
+
# List all ".safetensors" files in repo
|
45 |
+
sfts_available_files = fs.glob(f"{custom_model}/*safetensors")
|
46 |
+
sfts_available_files = get_files(sfts_available_files)
|
47 |
+
|
48 |
+
if sfts_available_files == []:
|
49 |
+
sfts_available_files = ["NO SAFETENSORS FILE"]
|
50 |
+
|
51 |
+
print(f"Safetensors available: {sfts_available_files}")
|
52 |
+
|
53 |
+
return gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def infer (custom_model, weight_name, prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
|
58 |
+
|
59 |
+
if weight_name == "NO SAFETENSORS FILE":
|
60 |
+
pipe.load_lora_weights(
|
61 |
+
custom_model,
|
62 |
+
low_cpu_mem_usage = True,
|
63 |
+
use_auth_token = True
|
64 |
+
)
|
65 |
+
|
66 |
+
else:
|
67 |
+
pipe.load_lora_weights(
|
68 |
+
custom_model,
|
69 |
+
weight_name = weight_name,
|
70 |
+
low_cpu_mem_usage = True,
|
71 |
+
use_auth_token = True
|
72 |
+
)
|
73 |
+
|
74 |
+
pipe.fuse_lora(lora_weight)
|
75 |
+
|
76 |
+
if seed < 0 :
|
77 |
+
seed = random.randint(0, 423538377342)
|
78 |
|
79 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
80 |
|
|
|
140 |
""")
|
141 |
with gr.Row():
|
142 |
with gr.Column():
|
143 |
+
if not is_shared_ui:
|
144 |
+
your_username = api.whoami()["name"]
|
145 |
+
my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
|
146 |
+
model_names = [item.modelId for item in my_models]
|
147 |
+
|
148 |
+
if not is_shared_ui:
|
149 |
+
custom_model = gr.Dropdown(
|
150 |
+
label = "Your custom model ID",
|
151 |
+
choices = model_names,
|
152 |
+
allow_custom_value = True
|
153 |
+
#placeholder = "username/model_id"
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
custom_model = gr.Textbox(
|
157 |
+
label="Your custom model ID",
|
158 |
+
placeholder="your_username/your_trained_model_name",
|
159 |
+
info="Make sure your model is set to PUBLIC"
|
160 |
+
)
|
161 |
+
|
162 |
+
weight_name = gr.Dropdown(
|
163 |
+
label="Safetensors file",
|
164 |
+
#value="pytorch_lora_weights.safetensors",
|
165 |
+
info="specify which one if model has several .safetensors files",
|
166 |
+
visible = False
|
167 |
+
)
|
168 |
with gr.Column():
|
169 |
load_model_btn = gr.Button("Load my model")
|
170 |
+
trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
|
171 |
|
172 |
prompt_in = gr.Textbox(label="Prompt")
|
173 |
with gr.Row():
|
|
|
187 |
)
|
188 |
seed = gr.Slider(
|
189 |
label="Seed",
|
190 |
+
info = "-1 denotes a random seed",
|
191 |
+
minimum=-1,
|
192 |
+
maximum=423538377342,
|
193 |
step=1,
|
194 |
+
value=-1
|
195 |
)
|
196 |
lora_weight = gr.Slider(
|
197 |
label="LoRa weigth",
|
|
|
205 |
|
206 |
load_model_btn.click(
|
207 |
fn = load_model,
|
208 |
+
inputs=[custom_model],
|
209 |
+
outputs = [model_status, weight_name, trigger_word]
|
210 |
)
|
211 |
submit_btn.click(
|
212 |
fn = infer,
|
213 |
+
inputs = [custom_model, weight_name, prompt_in, inf_steps, guidance_scale, seed, lora_weight],
|
214 |
outputs = [image_out]
|
215 |
)
|
216 |
|