Spaces:
Running
Running
File size: 11,951 Bytes
29e28c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gc
import os
import re
import subprocess
import time
from datetime import datetime, timezone, timedelta
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from binance.client import Client
from model import KronosTokenizer, Kronos, KronosPredictor
# --- Configuration ---
Config = {
"REPO_PATH": Path(__file__).parent.resolve(),
"MODEL_PATH": "../Kronos_model",
"SYMBOL": 'BTCUSDT',
"INTERVAL": '1h',
"HIST_POINTS": 360,
"PRED_HORIZON": 24,
"N_PREDICTIONS": 30,
"VOL_WINDOW": 24,
}
def load_model():
"""Loads the Kronos model and tokenizer."""
print("Loading Kronos model...")
tokenizer = KronosTokenizer.from_pretrained("NeoQuasar/Kronos-Tokenizer-base", cache_dir=Config["MODEL_PATH"])
model = Kronos.from_pretrained("NeoQuasar/Kronos-small", cache_dir=Config["MODEL_PATH"])
tokenizer.eval()
model.eval()
predictor = KronosPredictor(model, tokenizer, device="cpu", max_context=512)
print("Model loaded successfully.")
return predictor
def make_prediction(df, predictor):
"""Generates probabilistic forecasts using the Kronos model."""
last_timestamp = df['timestamps'].max()
start_new_range = last_timestamp + pd.Timedelta(hours=1)
new_timestamps_index = pd.date_range(
start=start_new_range,
periods=Config["PRED_HORIZON"],
freq='H'
)
y_timestamp = pd.Series(new_timestamps_index, name='y_timestamp')
x_timestamp = df['timestamps']
x_df = df[['open', 'high', 'low', 'close', 'volume', 'amount']]
with torch.no_grad():
print("Making main prediction (T=1.0)...")
begin_time = time.time()
close_preds_main, volume_preds_main = predictor.predict(
df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp,
pred_len=Config["PRED_HORIZON"], T=1.0, top_p=0.95,
sample_count=Config["N_PREDICTIONS"], verbose=True
)
print(f"Main prediction completed in {time.time() - begin_time:.2f} seconds.")
# print("Making volatility prediction (T=0.9)...")
# begin_time = time.time()
# close_preds_volatility, _ = predictor.predict(
# df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp,
# pred_len=Config["PRED_HORIZON"], T=0.9, top_p=0.9,
# sample_count=Config["N_PREDICTIONS"], verbose=True
# )
# print(f"Volatility prediction completed in {time.time() - begin_time:.2f} seconds.")
close_preds_volatility = close_preds_main
return close_preds_main, volume_preds_main, close_preds_volatility
def fetch_binance_data():
"""Fetches K-line data from the Binance public API."""
symbol, interval = Config["SYMBOL"], Config["INTERVAL"]
limit = Config["HIST_POINTS"] + Config["VOL_WINDOW"]
print(f"Fetching {limit} bars of {symbol} {interval} data from Binance...")
client = Client()
klines = client.get_klines(symbol=symbol, interval=interval, limit=limit)
cols = ['open_time', 'open', 'high', 'low', 'close', 'volume', 'close_time',
'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume',
'taker_buy_quote_asset_volume', 'ignore']
df = pd.DataFrame(klines, columns=cols)
df = df[['open_time', 'open', 'high', 'low', 'close', 'volume', 'quote_asset_volume']]
df.rename(columns={'quote_asset_volume': 'amount', 'open_time': 'timestamps'}, inplace=True)
df['timestamps'] = pd.to_datetime(df['timestamps'], unit='ms')
for col in ['open', 'high', 'low', 'close', 'volume', 'amount']:
df[col] = pd.to_numeric(df[col])
print("Data fetched successfully.")
return df
def calculate_metrics(hist_df, close_preds_df, v_close_preds_df):
"""
Calculates upside and volatility amplification probabilities for the 24h horizon.
"""
last_close = hist_df['close'].iloc[-1]
# 1. Upside Probability (for the 24-hour horizon)
# This is the probability that the price at the end of the horizon is higher than now.
final_hour_preds = close_preds_df.iloc[-1]
upside_prob = (final_hour_preds > last_close).mean()
# 2. Volatility Amplification Probability (over the 24-hour horizon)
hist_log_returns = np.log(hist_df['close'] / hist_df['close'].shift(1))
historical_vol = hist_log_returns.iloc[-Config["VOL_WINDOW"]:].std()
amplification_count = 0
for col in v_close_preds_df.columns:
full_sequence = pd.concat([pd.Series([last_close]), v_close_preds_df[col]]).reset_index(drop=True)
pred_log_returns = np.log(full_sequence / full_sequence.shift(1))
predicted_vol = pred_log_returns.std()
if predicted_vol > historical_vol:
amplification_count += 1
vol_amp_prob = amplification_count / len(v_close_preds_df.columns)
print(f"Upside Probability (24h): {upside_prob:.2%}, Volatility Amplification Probability: {vol_amp_prob:.2%}")
return upside_prob, vol_amp_prob
def create_plot(hist_df, close_preds_df, volume_preds_df):
"""Generates and saves a comprehensive forecast chart."""
print("Generating comprehensive forecast chart...")
# plt.style.use('seaborn-v0_8-whitegrid')
fig, (ax1, ax2) = plt.subplots(
2, 1, figsize=(15, 10), sharex=True,
gridspec_kw={'height_ratios': [3, 1]}
)
hist_time = hist_df['timestamps']
last_hist_time = hist_time.iloc[-1]
pred_time = pd.to_datetime([last_hist_time + timedelta(hours=i + 1) for i in range(len(close_preds_df))])
ax1.plot(hist_time, hist_df['close'], color='royalblue', label='Historical Price', linewidth=1.5)
mean_preds = close_preds_df.mean(axis=1)
ax1.plot(pred_time, mean_preds, color='darkorange', linestyle='-', label='Mean Forecast')
ax1.fill_between(pred_time, close_preds_df.min(axis=1), close_preds_df.max(axis=1), color='darkorange', alpha=0.2, label='Forecast Range (Min-Max)')
ax1.set_title(f'{Config["SYMBOL"]} Probabilistic Price & Volume Forecast (Next {Config["PRED_HORIZON"]} Hours)', fontsize=16, weight='bold')
ax1.set_ylabel('Price (USDT)')
ax1.legend()
ax1.grid(True, which='both', linestyle='--', linewidth=0.5)
ax2.bar(hist_time, hist_df['volume'], color='skyblue', label='Historical Volume', width=0.03)
ax2.bar(pred_time, volume_preds_df.mean(axis=1), color='sandybrown', label='Mean Forecasted Volume', width=0.03)
ax2.set_ylabel('Volume')
ax2.set_xlabel('Time (UTC)')
ax2.legend()
ax2.grid(True, which='both', linestyle='--', linewidth=0.5)
separator_time = hist_time.iloc[-1] + timedelta(minutes=30)
for ax in [ax1, ax2]:
ax.axvline(x=separator_time, color='red', linestyle='--', linewidth=1.5, label='_nolegend_')
ax.tick_params(axis='x', rotation=30)
fig.tight_layout()
chart_path = Config["REPO_PATH"] / 'prediction_chart.png'
fig.savefig(chart_path, dpi=120)
plt.close(fig)
print(f"Chart saved to: {chart_path}")
def update_html(upside_prob, vol_amp_prob):
"""
Updates the index.html file with the latest metrics and timestamp.
This version uses a more robust lambda function for replacement to avoid formatting errors.
"""
print("Updating index.html...")
html_path = Config["REPO_PATH"] / 'index.html'
now_utc_str = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')
upside_prob_str = f'{upside_prob:.1%}'
vol_amp_prob_str = f'{vol_amp_prob:.1%}'
with open(html_path, 'r', encoding='utf-8') as f:
content = f.read()
# Robustly replace content using lambda functions
content = re.sub(
r'(<strong id="update-time">).*?(</strong>)',
lambda m: f'{m.group(1)}{now_utc_str}{m.group(2)}',
content
)
content = re.sub(
r'(<p class="metric-value" id="upside-prob">).*?(</p>)',
lambda m: f'{m.group(1)}{upside_prob_str}{m.group(2)}',
content
)
content = re.sub(
r'(<p class="metric-value" id="vol-amp-prob">).*?(</p>)',
lambda m: f'{m.group(1)}{vol_amp_prob_str}{m.group(2)}',
content
)
with open(html_path, 'w', encoding='utf-8') as f:
f.write(content)
print("HTML file updated successfully.")
def git_commit_and_push(commit_message):
"""Adds, commits, and pushes specified files to the Git repository."""
print("Performing Git operations...")
try:
os.chdir(Config["REPO_PATH"])
subprocess.run(['git', 'add', 'prediction_chart.png', 'index.html'], check=True, capture_output=True, text=True)
commit_result = subprocess.run(['git', 'commit', '-m', commit_message], check=True, capture_output=True, text=True)
print(commit_result.stdout)
push_result = subprocess.run(['git', 'push'], check=True, capture_output=True, text=True)
print(push_result.stdout)
print("Git push successful.")
except subprocess.CalledProcessError as e:
output = e.stdout if e.stdout else e.stderr
if "nothing to commit" in output or "Your branch is up to date" in output:
print("No new changes to commit or push.")
else:
print(f"A Git error occurred:\n--- STDOUT ---\n{e.stdout}\n--- STDERR ---\n{e.stderr}")
def main_task(model):
"""Executes one full update cycle."""
print("\n" + "=" * 60 + f"\nStarting update task at {datetime.now(timezone.utc)}\n" + "=" * 60)
df_full = fetch_binance_data()
df_for_model = df_full.iloc[:-1]
close_preds, volume_preds, v_close_preds = make_prediction(df_for_model, model)
hist_df_for_plot = df_for_model.tail(Config["HIST_POINTS"])
hist_df_for_metrics = df_for_model.tail(Config["VOL_WINDOW"])
upside_prob, vol_amp_prob = calculate_metrics(hist_df_for_metrics, close_preds, v_close_preds)
create_plot(hist_df_for_plot, close_preds, volume_preds)
update_html(upside_prob, vol_amp_prob)
commit_message = f"Auto-update forecast for {datetime.now(timezone.utc):%Y-%m-%d %H:%M} UTC"
git_commit_and_push(commit_message)
# --- 新增的内存清理步骤 ---
# 显式删除大的DataFrame对象,帮助垃圾回收器
del df_full, df_for_model, close_preds, volume_preds, v_close_preds
del hist_df_for_plot, hist_df_for_metrics
# 强制执行垃圾回收
gc.collect()
# --- 内存清理结束 ---
print("-" * 60 + "\n--- Task completed successfully ---\n" + "-" * 60 + "\n")
def run_scheduler(model):
"""A continuous scheduler that runs the main task hourly."""
while True:
now = datetime.now(timezone.utc)
next_run_time = (now + timedelta(hours=1)).replace(minute=0, second=5, microsecond=0)
sleep_seconds = (next_run_time - now).total_seconds()
if sleep_seconds > 0:
print(f"Current time: {now:%Y-%m-%d %H:%M:%S UTC}.")
print(f"Next run at: {next_run_time:%Y-%m-%d %H:%M:%S UTC}. Waiting for {sleep_seconds:.0f} seconds...")
time.sleep(sleep_seconds)
try:
main_task(model)
except Exception as e:
print(f"\n!!!!!! A critical error occurred in the main task !!!!!!!")
print(f"Error: {e}")
import traceback
traceback.print_exc()
print("Retrying in 5 minutes...")
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n")
time.sleep(300)
if __name__ == '__main__':
model_path = Path(Config["MODEL_PATH"])
model_path.mkdir(parents=True, exist_ok=True)
loaded_model = load_model()
main_task(loaded_model) # Run once on startup
run_scheduler(loaded_model) # Start the schedule |