File size: 11,951 Bytes
29e28c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import gc
import os
import re
import subprocess
import time
from datetime import datetime, timezone, timedelta
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from binance.client import Client

from model import KronosTokenizer, Kronos, KronosPredictor

# --- Configuration ---
Config = {
    "REPO_PATH": Path(__file__).parent.resolve(),
    "MODEL_PATH": "../Kronos_model",
    "SYMBOL": 'BTCUSDT',
    "INTERVAL": '1h',
    "HIST_POINTS": 360,
    "PRED_HORIZON": 24,
    "N_PREDICTIONS": 30,
    "VOL_WINDOW": 24,
}


def load_model():
    """Loads the Kronos model and tokenizer."""
    print("Loading Kronos model...")
    tokenizer = KronosTokenizer.from_pretrained("NeoQuasar/Kronos-Tokenizer-base", cache_dir=Config["MODEL_PATH"])
    model = Kronos.from_pretrained("NeoQuasar/Kronos-small", cache_dir=Config["MODEL_PATH"])
    tokenizer.eval()
    model.eval()
    predictor = KronosPredictor(model, tokenizer, device="cpu", max_context=512)
    print("Model loaded successfully.")
    return predictor


def make_prediction(df, predictor):
    """Generates probabilistic forecasts using the Kronos model."""
    last_timestamp = df['timestamps'].max()
    start_new_range = last_timestamp + pd.Timedelta(hours=1)
    new_timestamps_index = pd.date_range(
        start=start_new_range,
        periods=Config["PRED_HORIZON"],
        freq='H'
    )
    y_timestamp = pd.Series(new_timestamps_index, name='y_timestamp')
    x_timestamp = df['timestamps']
    x_df = df[['open', 'high', 'low', 'close', 'volume', 'amount']]

    with torch.no_grad():
        print("Making main prediction (T=1.0)...")
        begin_time = time.time()
        close_preds_main, volume_preds_main = predictor.predict(
            df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp,
            pred_len=Config["PRED_HORIZON"], T=1.0, top_p=0.95,
            sample_count=Config["N_PREDICTIONS"], verbose=True
        )
        print(f"Main prediction completed in {time.time() - begin_time:.2f} seconds.")

        # print("Making volatility prediction (T=0.9)...")
        # begin_time = time.time()
        # close_preds_volatility, _ = predictor.predict(
        #     df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp,
        #     pred_len=Config["PRED_HORIZON"], T=0.9, top_p=0.9,
        #     sample_count=Config["N_PREDICTIONS"], verbose=True
        # )
        # print(f"Volatility prediction completed in {time.time() - begin_time:.2f} seconds.")
        close_preds_volatility = close_preds_main

    return close_preds_main, volume_preds_main, close_preds_volatility


def fetch_binance_data():
    """Fetches K-line data from the Binance public API."""
    symbol, interval = Config["SYMBOL"], Config["INTERVAL"]
    limit = Config["HIST_POINTS"] + Config["VOL_WINDOW"]

    print(f"Fetching {limit} bars of {symbol} {interval} data from Binance...")
    client = Client()
    klines = client.get_klines(symbol=symbol, interval=interval, limit=limit)

    cols = ['open_time', 'open', 'high', 'low', 'close', 'volume', 'close_time',
            'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume',
            'taker_buy_quote_asset_volume', 'ignore']
    df = pd.DataFrame(klines, columns=cols)

    df = df[['open_time', 'open', 'high', 'low', 'close', 'volume', 'quote_asset_volume']]
    df.rename(columns={'quote_asset_volume': 'amount', 'open_time': 'timestamps'}, inplace=True)

    df['timestamps'] = pd.to_datetime(df['timestamps'], unit='ms')
    for col in ['open', 'high', 'low', 'close', 'volume', 'amount']:
        df[col] = pd.to_numeric(df[col])

    print("Data fetched successfully.")
    return df


def calculate_metrics(hist_df, close_preds_df, v_close_preds_df):
    """

    Calculates upside and volatility amplification probabilities for the 24h horizon.

    """
    last_close = hist_df['close'].iloc[-1]

    # 1. Upside Probability (for the 24-hour horizon)
    # This is the probability that the price at the end of the horizon is higher than now.
    final_hour_preds = close_preds_df.iloc[-1]
    upside_prob = (final_hour_preds > last_close).mean()

    # 2. Volatility Amplification Probability (over the 24-hour horizon)
    hist_log_returns = np.log(hist_df['close'] / hist_df['close'].shift(1))
    historical_vol = hist_log_returns.iloc[-Config["VOL_WINDOW"]:].std()

    amplification_count = 0
    for col in v_close_preds_df.columns:
        full_sequence = pd.concat([pd.Series([last_close]), v_close_preds_df[col]]).reset_index(drop=True)
        pred_log_returns = np.log(full_sequence / full_sequence.shift(1))
        predicted_vol = pred_log_returns.std()
        if predicted_vol > historical_vol:
            amplification_count += 1

    vol_amp_prob = amplification_count / len(v_close_preds_df.columns)

    print(f"Upside Probability (24h): {upside_prob:.2%}, Volatility Amplification Probability: {vol_amp_prob:.2%}")
    return upside_prob, vol_amp_prob


def create_plot(hist_df, close_preds_df, volume_preds_df):
    """Generates and saves a comprehensive forecast chart."""
    print("Generating comprehensive forecast chart...")
    # plt.style.use('seaborn-v0_8-whitegrid')
    fig, (ax1, ax2) = plt.subplots(
        2, 1, figsize=(15, 10), sharex=True,
        gridspec_kw={'height_ratios': [3, 1]}
    )

    hist_time = hist_df['timestamps']
    last_hist_time = hist_time.iloc[-1]
    pred_time = pd.to_datetime([last_hist_time + timedelta(hours=i + 1) for i in range(len(close_preds_df))])

    ax1.plot(hist_time, hist_df['close'], color='royalblue', label='Historical Price', linewidth=1.5)
    mean_preds = close_preds_df.mean(axis=1)
    ax1.plot(pred_time, mean_preds, color='darkorange', linestyle='-', label='Mean Forecast')
    ax1.fill_between(pred_time, close_preds_df.min(axis=1), close_preds_df.max(axis=1), color='darkorange', alpha=0.2, label='Forecast Range (Min-Max)')
    ax1.set_title(f'{Config["SYMBOL"]} Probabilistic Price & Volume Forecast (Next {Config["PRED_HORIZON"]} Hours)', fontsize=16, weight='bold')
    ax1.set_ylabel('Price (USDT)')
    ax1.legend()
    ax1.grid(True, which='both', linestyle='--', linewidth=0.5)

    ax2.bar(hist_time, hist_df['volume'], color='skyblue', label='Historical Volume', width=0.03)
    ax2.bar(pred_time, volume_preds_df.mean(axis=1), color='sandybrown', label='Mean Forecasted Volume', width=0.03)
    ax2.set_ylabel('Volume')
    ax2.set_xlabel('Time (UTC)')
    ax2.legend()
    ax2.grid(True, which='both', linestyle='--', linewidth=0.5)

    separator_time = hist_time.iloc[-1] + timedelta(minutes=30)
    for ax in [ax1, ax2]:
        ax.axvline(x=separator_time, color='red', linestyle='--', linewidth=1.5, label='_nolegend_')
        ax.tick_params(axis='x', rotation=30)

    fig.tight_layout()
    chart_path = Config["REPO_PATH"] / 'prediction_chart.png'
    fig.savefig(chart_path, dpi=120)
    plt.close(fig)
    print(f"Chart saved to: {chart_path}")


def update_html(upside_prob, vol_amp_prob):
    """

    Updates the index.html file with the latest metrics and timestamp.

    This version uses a more robust lambda function for replacement to avoid formatting errors.

    """
    print("Updating index.html...")
    html_path = Config["REPO_PATH"] / 'index.html'
    now_utc_str = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S')
    upside_prob_str = f'{upside_prob:.1%}'
    vol_amp_prob_str = f'{vol_amp_prob:.1%}'

    with open(html_path, 'r', encoding='utf-8') as f:
        content = f.read()

    # Robustly replace content using lambda functions
    content = re.sub(
        r'(<strong id="update-time">).*?(</strong>)',
        lambda m: f'{m.group(1)}{now_utc_str}{m.group(2)}',
        content
    )
    content = re.sub(
        r'(<p class="metric-value" id="upside-prob">).*?(</p>)',
        lambda m: f'{m.group(1)}{upside_prob_str}{m.group(2)}',
        content
    )
    content = re.sub(
        r'(<p class="metric-value" id="vol-amp-prob">).*?(</p>)',
        lambda m: f'{m.group(1)}{vol_amp_prob_str}{m.group(2)}',
        content
    )

    with open(html_path, 'w', encoding='utf-8') as f:
        f.write(content)
    print("HTML file updated successfully.")


def git_commit_and_push(commit_message):
    """Adds, commits, and pushes specified files to the Git repository."""
    print("Performing Git operations...")
    try:
        os.chdir(Config["REPO_PATH"])
        subprocess.run(['git', 'add', 'prediction_chart.png', 'index.html'], check=True, capture_output=True, text=True)
        commit_result = subprocess.run(['git', 'commit', '-m', commit_message], check=True, capture_output=True, text=True)
        print(commit_result.stdout)
        push_result = subprocess.run(['git', 'push'], check=True, capture_output=True, text=True)
        print(push_result.stdout)
        print("Git push successful.")
    except subprocess.CalledProcessError as e:
        output = e.stdout if e.stdout else e.stderr
        if "nothing to commit" in output or "Your branch is up to date" in output:
            print("No new changes to commit or push.")
        else:
            print(f"A Git error occurred:\n--- STDOUT ---\n{e.stdout}\n--- STDERR ---\n{e.stderr}")


def main_task(model):
    """Executes one full update cycle."""
    print("\n" + "=" * 60 + f"\nStarting update task at {datetime.now(timezone.utc)}\n" + "=" * 60)
    df_full = fetch_binance_data()
    df_for_model = df_full.iloc[:-1]

    close_preds, volume_preds, v_close_preds = make_prediction(df_for_model, model)

    hist_df_for_plot = df_for_model.tail(Config["HIST_POINTS"])
    hist_df_for_metrics = df_for_model.tail(Config["VOL_WINDOW"])

    upside_prob, vol_amp_prob = calculate_metrics(hist_df_for_metrics, close_preds, v_close_preds)
    create_plot(hist_df_for_plot, close_preds, volume_preds)
    update_html(upside_prob, vol_amp_prob)

    commit_message = f"Auto-update forecast for {datetime.now(timezone.utc):%Y-%m-%d %H:%M} UTC"
    git_commit_and_push(commit_message)

    # --- 新增的内存清理步骤 ---
    # 显式删除大的DataFrame对象,帮助垃圾回收器
    del df_full, df_for_model, close_preds, volume_preds, v_close_preds
    del hist_df_for_plot, hist_df_for_metrics

    # 强制执行垃圾回收
    gc.collect()
    # --- 内存清理结束 ---

    print("-" * 60 + "\n--- Task completed successfully ---\n" + "-" * 60 + "\n")


def run_scheduler(model):
    """A continuous scheduler that runs the main task hourly."""
    while True:
        now = datetime.now(timezone.utc)
        next_run_time = (now + timedelta(hours=1)).replace(minute=0, second=5, microsecond=0)
        sleep_seconds = (next_run_time - now).total_seconds()

        if sleep_seconds > 0:
            print(f"Current time: {now:%Y-%m-%d %H:%M:%S UTC}.")
            print(f"Next run at: {next_run_time:%Y-%m-%d %H:%M:%S UTC}. Waiting for {sleep_seconds:.0f} seconds...")
            time.sleep(sleep_seconds)

        try:
            main_task(model)
        except Exception as e:
            print(f"\n!!!!!! A critical error occurred in the main task !!!!!!!")
            print(f"Error: {e}")
            import traceback
            traceback.print_exc()
            print("Retrying in 5 minutes...")
            print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n")
            time.sleep(300)


if __name__ == '__main__':
    model_path = Path(Config["MODEL_PATH"])
    model_path.mkdir(parents=True, exist_ok=True)

    loaded_model = load_model()
    main_task(loaded_model)  # Run once on startup
    run_scheduler(loaded_model)  # Start the schedule