Spaces:
Running
Running
File size: 26,916 Bytes
85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 2923ec3 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 85c1b5f 1f619b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import gc
import os
import re
import subprocess
import time
from datetime import datetime, timedelta, date
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
import baostock as bs
from pytz import timezone # 处理中国时区(Asia/Shanghai)
from model import KronosTokenizer, Kronos, KronosPredictor
# --- Configuration ---
Config = {
"REPO_PATH": Path(__file__).parent.resolve(),
"LOCAL_MODEL_PATH": os.path.join(Path(__file__).parent.resolve(), "models"),
"STOCK_CODE": "sh.000001",
"FREQUENCY": "d",
"START_DATE": "2022-01-01",
"PRED_HORIZON": 24,
"N_PREDICTIONS": 10,
"VOL_WINDOW": 24,
"PREDICTION_CACHE": os.path.join("/tmp", "predictions_cache"),
"CHART_PATH": os.path.join("/tmp", "prediction_chart.png"),
"HTML_PATH": os.path.join("/tmp", "index.html"),
# 核心修改:用“最后推理业务日”替代原IS_TODAY_INFERENCED(记录具体日期而非布尔值)
"LAST_INFERENCED_BUSINESS_DATE": None,
"CACHED_RESULTS": {
"close_preds": None,
"volume_preds": None,
"v_close_preds": None,
"upside_prob": None,
"vol_amp_prob": None,
"hist_df_for_plot": None
}
}
# 补充定义中文字体路径(此时Config已完全定义)
Config["CHINESE_FONT_PATH"] = os.path.join(Config["REPO_PATH"], "fonts", "wqy-microhei.ttf")
# 创建必要目录
os.makedirs(Config["PREDICTION_CACHE"], exist_ok=True)
os.makedirs(Config["LOCAL_MODEL_PATH"], exist_ok=True)
def get_china_time():
"""获取当前中国时间(Asia/Shanghai时区),返回datetime对象"""
china_tz = timezone("Asia/Shanghai")
return datetime.now(china_tz)
# -------------------------- 新增:业务日判断函数(核心修改) --------------------------
def get_business_info():
"""
基于北京时间20点分界,返回当前业务信息
返回:
current_business_date: date对象 - 当前业务日(20点前=昨天,20点后=今天)
is_after_20h: bool - 是否已过当天20点(北京时间)
"""
china_now = get_china_time()
is_after_20h = china_now.hour >= 20 # 判断是否过20点
if is_after_20h:
current_business_date = china_now.date() # 20点后:业务日=今天
else:
current_business_date = (china_now - timedelta(days=1)).date() # 20点前:业务日=昨天
return current_business_date, is_after_20h
def load_local_model():
"""加载本地Kronos模型,添加字体加载日志"""
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 开始加载本地Kronos模型...")
tokenizer_path = os.path.join(Config["LOCAL_MODEL_PATH"], "tokenizer")
model_path = os.path.join(Config["LOCAL_MODEL_PATH"], "model")
# 检查模型文件是否存在
if not os.path.exists(tokenizer_path):
raise FileNotFoundError(f"分词器路径不存在:{tokenizer_path}")
if not os.path.exists(model_path):
raise FileNotFoundError(f"模型路径不存在:{model_path}")
# 加载模型和分词器
tokenizer = KronosTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
model = Kronos.from_pretrained(model_path, local_files_only=True)
tokenizer.eval()
model.eval()
predictor = KronosPredictor(model, tokenizer, device="cpu", max_context=512)
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 本地模型加载成功")
return predictor
# -------------------------- 修改:数据获取日期(基于业务日) --------------------------
def fetch_stock_data():
"""获取股票数据(基于业务日更新,中国时间),添加数据获取日志"""
china_now = get_china_time()
current_business_date, _ = get_business_info() # 核心修改:用业务日作为数据结束日期
end_date = current_business_date.strftime("%Y-%m-%d")
need_points = Config["VOL_WINDOW"] + Config["VOL_WINDOW"] # 历史数据+波动率计算窗口
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始获取{Config['STOCK_CODE']}日线数据(业务日结束日期:{end_date})")
lg = bs.login()
if lg.error_code != '0':
raise ConnectionError(f"Baostock登录失败:{lg.error_msg}")
try:
# 调用baostock获取K线数据
fields = "date,open,high,low,close,volume"
rs = bs.query_history_k_data_plus(
code=Config["STOCK_CODE"],
fields=fields,
start_date=Config["START_DATE"],
end_date=end_date,
frequency=Config["FREQUENCY"],
adjustflag="2" # 后复权
)
if rs.error_code != '0':
raise ValueError(f"获取K线数据失败:{rs.error_msg}")
# 处理数据
data_list = []
while rs.next():
data_list.append(rs.get_row_data())
df = pd.DataFrame(data_list, columns=rs.fields)
# 数值列转换
numeric_cols = ['open', 'high', 'low', 'close', 'volume']
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce')
df = df.dropna(subset=numeric_cols)
# 添加时间戳和成交额列
df['timestamps'] = pd.to_datetime(df['date'], format='%Y-%m-%d')
df['amount'] = (df['open'] + df['high'] + df['low'] + df['close']) / 4 * df['volume']
df = df[['timestamps', 'open', 'high', 'low', 'close', 'volume', 'amount']]
# 检查数据量
if len(df) < need_points:
raise ValueError(f"数据量不足(仅{len(df)}个交易日),请提前START_DATE")
df = df.tail(need_points).reset_index(drop=True)
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 股票数据获取成功,共{len(df)}个交易日")
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 最新5条数据:\n{df[['timestamps', 'open', 'close', 'volume']].tail()}")
return df
finally:
bs.logout()
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] Baostock已登出")
def make_prediction(df, predictor):
"""执行模型推理,仅当前业务日首次调用时运行,添加推理日志"""
china_now = get_china_time()
current_business_date, _ = get_business_info()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始执行模型推理(业务日:{current_business_date},预测未来{Config['PRED_HORIZON']}个交易日)")
# 准备时间戳
last_timestamp = df['timestamps'].max()
start_new_range = last_timestamp + pd.Timedelta(days=1)
new_timestamps_index = pd.date_range(
start=start_new_range,
periods=Config["PRED_HORIZON"],
freq='D'
)
y_timestamp = pd.Series(new_timestamps_index, name='y_timestamp')
x_timestamp = df['timestamps']
x_df = df[['open', 'high', 'low', 'close', 'volume', 'amount']]
# 推理(禁用梯度计算,节省资源)
with torch.no_grad():
begin_time = time.time()
close_preds_main, volume_preds_main = predictor.predict(
df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp,
pred_len=Config["PRED_HORIZON"], T=1.0, top_p=0.95,
sample_count=Config["N_PREDICTIONS"], verbose=True
)
infer_time = time.time() - begin_time
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 推理完成,耗时{infer_time:.2f}秒")
# 波动率预测复用收盘价预测结果(保持原逻辑)
close_preds_volatility = close_preds_main
return close_preds_main, volume_preds_main, close_preds_volatility
def calculate_metrics(hist_df, close_preds_df, v_close_preds_df):
"""计算上涨概率和波动率放大概率,添加指标计算日志"""
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 开始计算预测指标...")
# 上涨概率(最后一个预测日相对于最新收盘价)
last_close = hist_df['close'].iloc[-1]
final_day_preds = close_preds_df.iloc[-1]
upside_prob = (final_day_preds > last_close).mean()
# 波动率放大概率(预测波动率vs历史波动率)
hist_log_returns = np.log(hist_df['close'] / hist_df['close'].shift(1))
historical_vol = hist_log_returns.iloc[-Config["VOL_WINDOW"]:].std()
amplification_count = 0
for col in v_close_preds_df.columns:
full_sequence = pd.concat([pd.Series([last_close]), v_close_preds_df[col]]).reset_index(drop=True)
pred_log_returns = np.log(full_sequence / full_sequence.shift(1))
predicted_vol = pred_log_returns.std()
if predicted_vol > historical_vol:
amplification_count += 1
vol_amp_prob = amplification_count / len(v_close_preds_df.columns)
# 打印指标日志
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 指标计算完成:")
print(f" - 24个交易日上涨概率:{upside_prob:.2%}")
print(f" - 24个交易日波动率放大概率:{vol_amp_prob:.2%}")
return upside_prob, vol_amp_prob
def create_plot():
china_now = get_china_time()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始生成预测图表(适配低版本matplotlib字体)")
# 从缓存获取数据(原有逻辑不变)
hist_df_for_plot = Config["CACHED_RESULTS"]["hist_df_for_plot"]
close_preds = Config["CACHED_RESULTS"]["close_preds"]
volume_preds = Config["CACHED_RESULTS"]["volume_preds"]
# -------------------------- 新增:创建画布和子图 --------------------------
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
# -----------------------------------------------------------------------------
# -------------------------- 修正:低版本matplotlib字体处理 --------------------------
from matplotlib.font_manager import FontProperties
font_path = Config["CHINESE_FONT_PATH"]
# 检查字体文件是否存在
if os.path.exists(font_path):
# 直接通过FontProperties指定字体文件路径(兼容低版本matplotlib)
chinese_font = FontProperties(fname=font_path)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 成功加载.ttf字体:{font_path}")
else:
# 字体文件不存在时的 fallback 逻辑
chinese_font = FontProperties(family='SimHei', size=10)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 字体文件不存在,使用系统默认字体:SimHei")
# 全局设置字体(确保坐标轴刻度等默认文本也能显示中文)
plt.rcParams["font.family"] = ["sans-serif"]
plt.rcParams["font.sans-serif"] = ["WenQuanYi Micro Hei", "SimHei", "Heiti TC"]
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
# -----------------------------------------------------------------------------
# 绘图时,为所有中文文本显式指定字体(关键)
# 1. 价格子图
hist_time = hist_df_for_plot['timestamps']
ax1.plot(hist_time, hist_df_for_plot['close'], color='#00274C', linewidth=1.5)
mean_preds = close_preds.mean(axis=1)
# 生成预测时间序列(假设预测是在历史最后一个时间之后的24个交易日)
last_hist_time = hist_time.max()
pred_time = pd.date_range(start=last_hist_time + pd.Timedelta(days=1), periods=Config["PRED_HORIZON"], freq='B')
ax1.plot(pred_time, mean_preds, color='#FF6B00', linestyle='-')
ax1.fill_between(pred_time, close_preds.min(axis=1), close_preds.max(axis=1),
color='#FF6B00', alpha=0.2)
# 中文标题/标签指定字体
ax1.set_title(f'{Config["STOCK_CODE"]} 上证指数概率预测(未来{Config["PRED_HORIZON"]}个交易日)',
fontsize=16, weight='bold', fontproperties=chinese_font)
ax1.set_ylabel('价格(元)', fontsize=12, fontproperties=chinese_font)
# 图例指定字体
ax1.legend(['上证指数(后复权)', '预测均价', '预测区间(最小-最大)'],
fontsize=10, prop=chinese_font)
ax1.grid(True, which='both', linestyle='--', linewidth=0.5)
# 2. 成交量子图(同理指定字体)
ax2.bar(hist_time, hist_df_for_plot['volume']/1e8, color='#00A86B', width=0.6)
ax2.bar(pred_time, volume_preds.mean(axis=1)/1e8, color='#FF6B00', width=0.6)
ax2.set_ylabel('成交量(亿手)', fontsize=12, fontproperties=chinese_font)
ax2.set_xlabel('日期', fontsize=12, fontproperties=chinese_font)
ax2.legend(['历史成交量(亿手)', '预测成交量(亿手)'],
fontsize=10, prop=chinese_font)
ax2.grid(True, which='both', linestyle='--', linewidth=0.5)
# 添加分割线(区分历史和预测数据)
separator_time = last_hist_time + pd.Timedelta(hours=12)
for ax in [ax1, ax2]:
ax.axvline(x=separator_time, color='red', linestyle='--', linewidth=1.5, label='_nolegend_')
ax.tick_params(axis='x', rotation=45)
# 保存图表
fig.tight_layout()
chart_path = Path(Config["CHART_PATH"])
if chart_path.exists():
chart_path.chmod(0o666) # 确保可写权限
fig.savefig(chart_path, dpi=120, bbox_inches='tight')
plt.close(fig)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 图表生成完成,保存路径:{chart_path}")
def update_html():
"""更新HTML页面,复用当前业务日缓存的指标,添加HTML更新日志"""
china_now = get_china_time()
current_business_date, _ = get_business_info()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始更新HTML页面(业务日:{current_business_date})...")
# 1. 从缓存获取指标(增加空值判断,避免报错)
upside_prob = Config["CACHED_RESULTS"].get("upside_prob")
vol_amp_prob = Config["CACHED_RESULTS"].get("vol_amp_prob")
# 处理缓存为空的情况
if upside_prob is None or vol_amp_prob is None:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 警告:缓存中未找到指标数据,无法更新HTML")
return
# 格式化指标(保留1位小数百分比)
upside_prob_str = f'{upside_prob:.1%}'
vol_amp_prob_str = f'{vol_amp_prob:.1%}'
now_cn_str = china_now.strftime('%Y-%m-%d %H:%M:%S')
# 2. 初始化HTML(不存在则创建基础模板)
html_path = Path(Config["HTML_PATH"])
src_html_path = Config["REPO_PATH"] / "templates" / "index.html"
if not html_path.exists():
html_path.parent.mkdir(parents=True, exist_ok=True)
if src_html_path.exists():
# 复制项目模板
import shutil
shutil.copy2(src_html_path, html_path)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 从项目模板复制HTML:{src_html_path} -> {html_path}")
else:
# 创建基础中文HTML(确保指标对应的id与正则匹配)
base_html = """
<!DOCTYPE html>
<html>
<head>
<title>清华大模型Kronos上证指数预测</title>
<style>
body { max-width: 1200px; margin: 0 auto; padding: 20px; font-family: "WenQuanYi Micro Hei", Arial; }
.metric { margin: 20px 0; padding: 10px; background: #f5f5f5; border-radius: 5px; }
.metric-value { font-size: 1.2em; color: #0066cc; }
img { max-width: 100%; height: auto; }
h1 { color: #333; }
</style>
</head>
<body>
<h1>清华大学K线大模型Kronos上证指数(sh.000001)概率预测</h1>
<p>最后更新时间(中国时间):<strong id="update-time">未更新</strong></p>
<p>同 步 网 站:<strong><a href="http://15115656.top" target="_blank">火狼工具站</a></strong></p>
<div class="metric">
<p>24个交易日上涨概率:<span class="metric-value" id="upside-prob">--%</span></p>
</div>
<div class="metric">
<p>波动率放大概率:<span class="metric-value" id="vol-amp-prob">--%</span></p>
</div>
<div><img src="/prediction_chart.png" alt="上证指数预测图表"></div>
</body>
</html>
"""
with open(html_path, 'w', encoding='utf-8') as f:
f.write(base_html)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 在/tmp创建基础HTML:{html_path}")
# 3. 读取HTML内容(确保读取成功)
try:
with open(html_path, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 读取HTML失败:{str(e)}")
return
# 4. 正则替换(关键:确保re.sub()参数完整)
# 替换更新时间
content = re.sub(
pattern=r'(<strong id="update-time">).*?(</strong>)',
repl=lambda m: f'{m.group(1)}{now_cn_str}{m.group(2)}',
string=content
)
# 替换上涨概率(id="upside-prob",与HTML模板对应)
content = re.sub(
pattern=r'(<span class="metric-value" id="upside-prob">).*?(</span>)',
repl=lambda m: f'{m.group(1)}{upside_prob_str}{m.group(2)}',
string=content
)
# 替换波动率放大概率(id="vol-amp-prob",与HTML模板对应)
content = re.sub(
pattern=r'(<span class="metric-value" id="vol-amp-prob">).*?(</span>)',
repl=lambda m: f'{m.group(1)}{vol_amp_prob_str}{m.group(2)}',
string=content
)
# 5. 写入更新后的HTML
try:
with open(html_path, 'w', encoding='utf-8') as f:
f.write(content)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] HTML更新完成,路径:{html_path}")
# 验证替换结果(调试用)
print(f"[DEBUG] 上涨概率更新为:{upside_prob_str}")
print(f"[DEBUG] 波动率概率更新为:{vol_amp_prob_str}")
except Exception as e:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 写入HTML失败:{str(e)}")
def git_commit_and_push():
"""Git提交(仅当Git存在时执行),添加Git操作日志"""
china_now = get_china_time()
current_business_date, _ = get_business_info()
commit_message = f"Auto-update: 上证指数预测(业务日{current_business_date} 中国时间)"
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始执行Git提交操作,提交信息:{commit_message}")
# 检查Git是否安装
try:
subprocess.run(['git', '--version'], check=True, capture_output=True, text=True)
except (subprocess.CalledProcessError, FileNotFoundError):
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git未安装或未在PATH中,跳过Git操作")
return
# 执行Git操作
try:
os.chdir(Config["REPO_PATH"])
# 复制图表和HTML到Git跟踪目录(若需要)
chart_src = Config["CHART_PATH"]
chart_dst = Config["REPO_PATH"] / "prediction_chart.png"
html_src = Config["HTML_PATH"]
html_dst = Config["REPO_PATH"] / "index.html"
if os.path.exists(chart_src):
import shutil
shutil.copy2(chart_src, chart_dst)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 图表复制到Git目录:{chart_dst}")
if os.path.exists(html_src):
shutil.copy2(html_src, html_dst)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] HTML复制到Git目录:{html_dst}")
# Git add
subprocess.run(['git', 'add', 'prediction_chart.png', 'index.html'], check=True, capture_output=True, text=True)
# Git commit
commit_result = subprocess.run(['git', 'commit', '-m', commit_message], check=True, capture_output=True, text=True)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git提交输出:\n{commit_result.stdout}")
# Git push
push_result = subprocess.run(['git', 'push'], check=True, capture_output=True, text=True)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git推送输出:\n{push_result.stdout}")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git操作完成")
except subprocess.CalledProcessError as e:
output = e.stdout if e.stdout else e.stderr
if "nothing to commit" in output or "Your branch is up to date" in output:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 无新内容需要提交或推送")
else:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git错误:\nSTDOUT: {e.stdout}\nSTDERR: {e.stderr}")
except PermissionError as e:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] Git权限错误:{str(e)},跳过Git操作")
# -------------------------- 修改:主任务逻辑(基于业务日判断) --------------------------
def main_task(model):
"""主任务:控制基于20点分界的业务日推理逻辑,同业务日复用缓存"""
china_now = get_china_time()
current_business_date, is_after_20h = get_business_info() # 获取当前业务信息
print(f"\n[{china_now:%Y-%m-%d %H:%M:%S}] " + "="*60)
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 开始执行主任务")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 当前业务日:{current_business_date}(北京时间{'20点后' if is_after_20h else '20点前'})")
# 核心修改:判断当前业务日是否已推理(而非自然日)
if Config["LAST_INFERENCED_BUSINESS_DATE"] == current_business_date:
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 当前业务日({current_business_date})已完成推理,直接复用缓存结果")
# 复用缓存生成图表和HTML
create_plot()
update_html()
git_commit_and_push()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 主任务完成(复用缓存)")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] " + "="*60 + "\n")
return
# 当前业务日未推理:执行完整流程
try:
# 1. 获取股票数据
df_full = fetch_stock_data()
df_for_model = df_full.iloc[:-1] # 排除最后一行避免数据泄漏
# 2. 执行推理
close_preds, volume_preds, v_close_preds = make_prediction(df_for_model, model)
# 3. 计算指标
hist_df_for_metrics = df_for_model.tail(Config["VOL_WINDOW"])
upside_prob, vol_amp_prob = calculate_metrics(hist_df_for_metrics, close_preds, v_close_preds)
# 4. 缓存结果(当前业务日复用)
hist_df_for_plot = df_for_model.tail(Config["VOL_WINDOW"]) # 用于绘图的历史数据
Config["CACHED_RESULTS"] = {
"close_preds": close_preds,
"volume_preds": volume_preds,
"v_close_preds": v_close_preds,
"upside_prob": upside_prob,
"vol_amp_prob": vol_amp_prob,
"hist_df_for_plot": hist_df_for_plot
}
# 核心修改:标记当前业务日已推理(而非布尔值)
Config["LAST_INFERENCED_BUSINESS_DATE"] = current_business_date
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 业务日({current_business_date})推理结果已缓存,同业务日后续调用将复用")
# 5. 生成图表
create_plot()
# 6. 更新HTML
update_html()
# 7. Git提交
git_commit_and_push()
# 8. 内存回收
del df_full, df_for_model, hist_df_for_metrics
gc.collect()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 主任务完成(首次推理)")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] " + "="*60 + "\n")
except Exception as e:
# 异常时不更新业务日标记,下次调用重试
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 主任务执行失败,业务日({current_business_date})推理标记为未完成")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 错误信息:{str(e)}")
import traceback
traceback.print_exc()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] " + "="*60 + "\n")
# -------------------------- 修改:定时器逻辑(从0点改为20点触发) --------------------------
def run_scheduler(model):
"""定时器:基于北京时间20点分界触发任务,其他时间5分钟检查一次"""
china_tz = timezone("Asia/Shanghai")
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 定时器启动(中国时间),每天20点执行推理")
while True:
china_now = get_china_time()
current_business_date, is_after_20h = get_business_info()
# 核心修改:计算下次执行时间(20点触发)
if is_after_20h:
# 已过当天20点 → 下次执行时间为次日20点
next_exec_date = (china_now + timedelta(days=1)).date()
else:
# 未过当天20点 → 下次执行时间为当天20点
next_exec_date = china_now.date()
# 构造下次执行时间(20:00:05,留5秒缓冲避免毫秒级误差)
next_exec_time = datetime.combine(
next_exec_date,
datetime.strptime("20:00:05", "%H:%M:%S").time(),
tzinfo=china_tz
)
# 计算等待时间(秒),最小等待5分钟(防止时间计算错误导致负数)
sleep_seconds = (next_exec_time - china_now).total_seconds()
sleep_seconds = max(sleep_seconds, 300)
# 打印等待日志
print(f"\n[{china_now:%Y-%m-%d %H:%M:%S}] 定时器状态:")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 当前时间:{china_now:%Y-%m-%d %H:%M:%S}(中国时间)")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 当前业务日:{current_business_date}({'20点后' if is_after_20h else '20点前'})")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 下次执行时间:{next_exec_time:%Y-%m-%d %H:%M:%S}(中国时间)")
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 等待时间:{sleep_seconds:.0f}秒(约{sleep_seconds/3600:.1f}小时)")
# 等待到下次执行时间
time.sleep(sleep_seconds)
# 到达执行时间,触发主任务
try:
main_task(model)
# 无需重置业务日标记(下次判断基于新业务日)
except Exception as e:
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 定时器触发任务失败:{str(e)}")
import traceback
traceback.print_exc()
print(f"[{get_china_time():%Y-%m-%d %H:%M:%S}] 5分钟后重试...")
time.sleep(300) # 重试间隔5分钟
if __name__ == '__main__':
# 初始化:加载模型→执行一次主任务→启动定时器
china_now = get_china_time()
print(f"[{china_now:%Y-%m-%d %H:%M:%S}] 程序启动(中国时间)")
# 加载模型
loaded_model = load_local_model()
# 首次执行主任务(若当前业务日未执行)
main_task(loaded_model)
# 启动定时器(中国时间每天20点执行)
run_scheduler(loaded_model) |