Astock / model /module.py
fiewolf1000's picture
Upload 11 files
29e28c3 verified
raw
history blame
23.5 kB
import math
from einops import rearrange, reduce
import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
class DifferentiableEntropyFunction(Function):
@staticmethod
def forward(ctx, zq, basis, K, eps):
zb = (zq + 1) / 2
zi = ((zb * basis).sum(-1)).to(torch.int64)
cnt = torch.scatter_reduce(torch.zeros(2 ** K, device=zq.device, dtype=zq.dtype),
0,
zi.flatten(),
torch.ones_like(zi.flatten()).to(zq.dtype),
'sum')
prob = (cnt + eps) / (cnt + eps).sum()
H = -(prob * torch.log(prob)).sum()
ctx.save_for_backward(zq, zi, prob)
ctx.K = K
return H
@staticmethod
def backward(ctx, grad_output):
zq, zi, prob = ctx.saved_tensors
grad_array = -grad_output * (torch.log(prob) + 1) / zi.numel() / ctx.K
reord_grad = grad_array[zi.flatten()].reshape(zi.shape)
grad_input = reord_grad.unsqueeze(-1) * zq
return grad_input, None, None, None, None
def codebook_entropy(zq, basis, K, eps=1e-4):
return DifferentiableEntropyFunction.apply(zq, basis, K, eps)
class BinarySphericalQuantizer(nn.Module):
def __init__(self, embed_dim, beta, gamma0, gamma, zeta,
input_format='bchw',
soft_entropy=True, group_size=9,
persample_entropy_compute='analytical',
cb_entropy_compute='group',
l2_norm=True,
inv_temperature=1):
"""
Paper link: https://arxiv.org/pdf/2406.07548.pdf
Here we use the official implementation of the BinarySphericalQuantizer.
"""
super().__init__()
self.embed_dim = embed_dim
self.beta = beta # loss weight for commit loss
self.gamma0 = gamma0 # loss weight for entropy penalty
self.gamma = gamma # loss weight for entropy penalty
self.zeta = zeta # loss weight for entire entropy penalty
self.input_format = input_format
assert self.embed_dim % group_size == 0, "embed_dim must be divisible by group_size"
self.num_groups = self.embed_dim // group_size
self.group_size = group_size
assert persample_entropy_compute in ['group', 'analytical'], "persample_entropy_compute must be either 'group' or 'analytical'"
assert cb_entropy_compute in ['group', 'nce'], "cb_entropy_compute must be either 'group' or 'nce'"
self.persample_entropy_compute = persample_entropy_compute
self.cb_entropy_compute = cb_entropy_compute
self.l2_norm = l2_norm
self.inv_temperature = inv_temperature
self.register_buffer('basis', 2 ** torch.arange(embed_dim - 1, -1, -1))
self.register_buffer('group_basis', 2 ** torch.arange(group_size - 1, -1, -1))
self.num_dimensions = 2 ** embed_dim
self.bits_per_index = embed_dim
# we only need to keep the codebook portion up to the group size
# because we approximate the H loss with this subcode
group_codes = torch.arange(2 ** self.group_size)
group_codebook = self.indexes_to_codes(group_codes).float()[:, -group_size:]
self.register_buffer('group_codebook', group_codebook, persistent=False)
self.soft_entropy = soft_entropy # soft_entropy: Sec 3.2 of https://arxiv.org/pdf/1911.05894.pdf
def quantize(self, z):
assert z.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {z.shape[-1]}"
zhat = torch.where(z > 0,
torch.tensor(1, dtype=z.dtype, device=z.device),
torch.tensor(-1, dtype=z.dtype, device=z.device))
return z + (zhat - z).detach()
def forward(self, z):
# if self.input_format == 'bchw':
# z = rearrange(z, 'b c h w -> b h w c')
zq = self.quantize(z)
indices = self.codes_to_indexes(zq.detach())
group_indices = self.codes_to_group_indexes(zq.detach())
if not self.training:
used_codes = torch.unique(indices, return_counts=False)
else:
used_codes = None
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
if self.soft_entropy:
persample_entropy, cb_entropy, avg_prob = self.soft_entropy_loss(z)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
else:
zb_by_sample = ((zq + 1) / 2).reshape(z.shape[0], -1, z.shape[-1]).to(torch.float32)
persample_entropy = self.get_hard_per_sample_entropy(zb_by_sample)
cb_entropy = codebook_entropy(zq, self.basis, self.embed_dim)
entropy_penalty = self.gamma0 * persample_entropy - self.gamma * cb_entropy
zq = zq * q_scale
# commit loss
commit_loss = self.beta * torch.mean(((zq.detach() - z) ** 2).sum(dim=-1))
# if self.input_format == 'bchw':
# zq = rearrange(zq, 'b h w c -> b c h w')
return (
zq,
commit_loss + self.zeta * entropy_penalty / self.inv_temperature,
{"H": cb_entropy, "used_codes": used_codes, "indices": indices, "group_indices": group_indices,
"avg_prob": avg_prob}
)
def soft_entropy_loss(self, z):
# if we divide the code in subgroups of size group_size, the codebook will be of size 2 ** group_size
# the sub-code is the last group_size bits of the full code
group_code_book = self.group_codebook / (self.embed_dim ** 0.5 if self.l2_norm else 1)
divided_z = rearrange(z, '... (g c) -> ... g c', c=self.group_size)
# we calculate the distance between the divided_z and the codebook for each subgroup
distance = - 2 * torch.einsum('... g c, d c ->... g d', divided_z, group_code_book)
prob = (-distance * self.inv_temperature).softmax(dim=-1)
if self.persample_entropy_compute == 'analytical':
if self.l2_norm:
p = torch.sigmoid(-4 * z / (self.embed_dim ** 0.5) * self.inv_temperature)
else:
p = torch.sigmoid(-4 * z * self.inv_temperature)
prob = torch.stack([p, 1 - p], dim=-1)
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
else:
per_sample_entropy = self.get_entropy(prob, dim=-1, normalize=False).sum(dim=-1).mean()
# macro average of the probability of each subgroup
avg_prob = reduce(prob, '... g d ->g d', 'mean')
codebook_entropy = self.get_entropy(avg_prob, dim=-1, normalize=False)
# the approximation of the entropy is the sum of the entropy of each subgroup
return per_sample_entropy, codebook_entropy.sum(), avg_prob
def get_hard_per_sample_entropy(self, zb_by_sample):
probs_per_dim = zb_by_sample.sum(1) / zb_by_sample.shape[1]
persample_entropy = - probs_per_dim * torch.log(probs_per_dim + 1e-8) - (1 - probs_per_dim) * torch.log(1 - probs_per_dim + 1e-8)
persample_entropy = persample_entropy.sum(-1)
return persample_entropy.mean()
def codes_to_indexes(self, zhat):
"""Converts a `code` to an index in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
assert zhat.shape[-1] == self.embed_dim, f"Expected {self.embed_dim} dimensions, got {zhat.shape[-1]}"
return ((zhat + 1) / 2 * self.basis).sum(axis=-1).to(torch.int64)
def codes_to_group_indexes(self, zhat):
"""Converts a `code` to a list of indexes (in groups) in the codebook.
Args:
zhat: A tensor of shape (B, ..., C) containing the codes. must be in {-1, 1}
"""
zhat_in_group = rearrange(zhat, 'b ... (g c) -> b ... g c', c=self.group_size)
return ((zhat_in_group + 1) / 2 * self.group_basis).sum(axis=-1).to(torch.int64)
def indexes_to_codes(self, indices):
"""Inverse of `indexes_to_codes`."""
indices = indices.unsqueeze(-1)
codes_non_centered = torch.remainder(
torch.floor_divide(indices, self.basis), 2
)
return codes_non_centered * 2 - 1
def group_indexes_to_codes(self, group_indices):
"""Inverse of `group_indexes_to_codes`."""
group_indices = group_indices.unsqueeze(-1)
codes_non_centered = torch.remainder(
torch.floor_divide(group_indices, self.group_basis), 2
)
codes_non_centered = rearrange(codes_non_centered, 'b ... g c -> b ... (g c)')
return codes_non_centered * 2 - 1
def get_entropy(self, count, dim=-1, eps=1e-4, normalize=True):
if normalize:
probs = (count + eps) / (count + eps).sum(dim=dim, keepdim=True)
else:
probs = count
H = -(probs * torch.log(probs + 1e-8)).sum(dim=dim)
return H
def get_group_codebook_entry(self, group_indices):
z_q = self.group_indexes_to_codes(group_indices)
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
z_q = z_q * q_scale
if self.input_format == 'bchw':
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], 'Invalid sequence length'
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
return z_q
def get_codebook_entry(self, indices):
z_q = self.indexes_to_codes(indices)
q_scale = 1. / (self.embed_dim ** 0.5) if self.l2_norm else 1.
z_q = z_q * q_scale
if self.input_format == 'bchw':
h, w = int(z_q.shape[1] ** 0.5)
assert h * w == z_q.shape[1], 'Invalid sequence length'
z_q = rearrange(z_q, 'b (h w) c -> b c h w', h=h)
return z_q
class BSQuantizer(nn.Module):
def __init__(self, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size):
super().__init__()
self.codebook_dim = s1_bits + s2_bits
self.s1_bits = s1_bits
self.s2_bits = s2_bits
self.bsq = BinarySphericalQuantizer(self.codebook_dim, beta, gamma0, gamma, zeta, group_size=group_size)
def bits_to_indices(self, bits):
bits = (bits >= 0).to(torch.long)
indices = 2 ** torch.arange(
0,
bits.shape[-1],
1,
dtype=torch.long,
device=bits.device,
)
return (bits * indices).sum(-1)
def forward(self, z, half=False):
z = F.normalize(z, dim=-1)
quantized, bsq_loss, metrics = self.bsq(z)
if half:
q_pre = quantized[:, :, :self.s1_bits]
q_post = quantized[:, :, self.s1_bits:]
z_indices = [self.bits_to_indices(q_pre), self.bits_to_indices(q_post)]
else:
z_indices = self.bits_to_indices(quantized)
return bsq_loss, quantized, z_indices
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class FeedForward(nn.Module):
def __init__(self, d_model, ff_dim, ffn_dropout_p=0.0):
super().__init__()
self.w1 = nn.Linear(d_model, ff_dim, bias=False)
self.w3 = nn.Linear(d_model, ff_dim, bias=False)
self.w2 = nn.Linear(ff_dim, d_model, bias=False)
self.ffn_dropout = nn.Dropout(ffn_dropout_p)
def forward(self, x):
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class RotaryPositionalEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
def _update_cos_sin_cache(self, x, seq_len):
if seq_len != self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self.cos_cached = emb.cos()[None, None, :, :]
self.sin_cached = emb.sin()[None, None, :, :]
return self.cos_cached, self.sin_cached
def forward(self, q, k):
cos, sin = self._update_cos_sin_cache(q, q.shape[-2])
return (
(q * cos) + (self._rotate_half(q) * sin),
(k * cos) + (self._rotate_half(k) * sin),
)
def _rotate_half(self, x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0).to(query.device)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
if attn_mask is not None:
attn_mask_bias = torch.zeros_like(attn_weight)
if attn_mask.dtype == torch.bool:
attn_mask_bias.masked_fill_(attn_mask, float("-inf"))
else:
attn_mask_bias += attn_mask
attn_weight += attn_mask_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class MultiHeadAttentionWithRoPE(nn.Module):
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout_p=0.0):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.rotary = RotaryPositionalEmbedding(self.head_dim)
self.attn_dropout_p = attn_dropout_p
self.resid_dropout = nn.Dropout(resid_dropout_p)
def forward(self, x, key_padding_mask=None):
batch_size, seq_len, _ = x.shape
q = self.q_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(x).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
q, k = self.rotary(q, k)
if key_padding_mask is not None:
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2) # [batch, 1, 1, seq_len]
attn_mask = attn_mask.expand(-1, self.n_heads, seq_len, -1) # [batch, n_heads, q_len, k_len]
else:
attn_mask = None
attn_output = scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_dropout_p,
is_causal=True
)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
return self.resid_dropout(self.out_proj(attn_output))
class MultiHeadCrossAttentionWithRoPE(nn.Module):
def __init__(self, d_model, n_heads, attn_dropout_p=0.0, resid_dropout=0.0):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
self.out_proj = nn.Linear(d_model, d_model)
self.rotary = RotaryPositionalEmbedding(self.head_dim)
self.attn_dropout_p = attn_dropout_p
self.resid_dropout = nn.Dropout(resid_dropout)
def forward(self, query, key, value, key_padding_mask=None):
batch_size, q_len, _ = query.shape
_, seq_len, _ = key.shape
q = self.q_proj(query).view(batch_size, q_len, self.n_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(key).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(value).view(batch_size, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
q, k = self.rotary(q, k)
if key_padding_mask is not None:
attn_mask = key_padding_mask.unsqueeze(1).unsqueeze(2)
attn_mask = attn_mask.expand(-1, self.n_heads, q_len, -1)
else:
attn_mask = None
is_causal_flag = self.training
attn_output = scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=self.attn_dropout_p,
is_causal=is_causal_flag
)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, q_len, self.d_model)
return self.resid_dropout(self.out_proj(attn_output))
class HierarchicalEmbedding(nn.Module):
def __init__(self, s1_bits, s2_bits, d_model=256):
super().__init__()
self.s1_bits = s1_bits
self.s2_bits = s2_bits
vocab_s1 = 2 ** s1_bits
vocab_s2 = 2 ** s2_bits
self.emb_s1 = nn.Embedding(vocab_s1, d_model)
self.emb_s2 = nn.Embedding(vocab_s2, d_model)
self.d_model = d_model
self.fusion_proj = nn.Linear(d_model * 2, d_model)
nn.init.normal_(self.emb_s1.weight, mean=0, std=d_model ** -0.5)
nn.init.normal_(self.emb_s2.weight, mean=0, std=d_model ** -0.5)
def forward(self, token_ids):
"""Inputs:
token_ids: [batch_size, seq_len] token ID
Output: [batch_size, seq_len, d_model]
"""
if isinstance(token_ids, tuple) or isinstance(token_ids, list):
s1_ids, s2_ids = token_ids
else:
s1_ids, s2_ids = self.split_token(token_ids, self.s2_bits)
s1_emb = self.emb_s1(s1_ids) * math.sqrt(self.d_model)
s2_emb = self.emb_s2(s2_ids) * math.sqrt(self.d_model)
return self.fusion_proj(torch.cat([s1_emb, s2_emb], dim=-1))
class DependencyAwareLayer(nn.Module):
def __init__(self, d_model, n_heads=4, attn_dropout_p=0.0, resid_dropout=0.0):
super().__init__()
self.cross_attn = MultiHeadCrossAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout)
self.norm = RMSNorm(d_model)
def forward(self, hidden_states, sibling_embed, key_padding_mask=None):
"""hidden_states: [batch, seq_len, d_model]
sibling_embed: Embedding from another subtoken
"""
attn_out = self.cross_attn(
query=sibling_embed,
key=hidden_states,
value=hidden_states,
key_padding_mask=key_padding_mask
)
return self.norm(hidden_states + attn_out)
class TransformerBlock(nn.Module):
def __init__(self, d_model, n_heads, ff_dim=1024, ffn_dropout_p=0.0, attn_dropout_p=0.0, resid_dropout_p=0.0):
super().__init__()
self.norm1 = RMSNorm(d_model)
self.self_attn = MultiHeadAttentionWithRoPE(d_model, n_heads, attn_dropout_p, resid_dropout_p)
self.norm2 = RMSNorm(d_model)
self.ffn = FeedForward(d_model, ff_dim, ffn_dropout_p)
def forward(self, x, key_padding_mask=None):
residual = x
x = self.norm1(x)
attn_out = self.self_attn(x, key_padding_mask=key_padding_mask)
x = residual + attn_out
residual = x
x = self.norm2(x)
ffn_out = self.ffn(x)
x = residual + ffn_out
return x
class DualHead(nn.Module):
def __init__(self, s1_bits, s2_bits, d_model):
super().__init__()
self.vocab_s1 = 2 ** s1_bits
self.vocab_s2 = 2 ** s2_bits
self.proj_s1 = nn.Linear(d_model, self.vocab_s1)
self.proj_s2 = nn.Linear(d_model, self.vocab_s2)
def compute_loss(self, s1_logits, s2_logits, s1_targets, s2_targets, padding_mask=None):
if padding_mask is not None:
valid_mask = (padding_mask == 0)
s1_logits = s1_logits[valid_mask]
s2_logits = s2_logits[valid_mask]
s1_targets = s1_targets[valid_mask]
s2_targets = s2_targets[valid_mask]
ce_s1 = F.cross_entropy(s1_logits, s1_targets)
ce_s2 = F.cross_entropy(s2_logits, s2_targets)
else:
ce_s1 = F.cross_entropy(s1_logits.reshape(-1, self.vocab_s1), s1_targets.reshape(-1))
ce_s2 = F.cross_entropy(s2_logits.reshape(-1, self.vocab_s2), s2_targets.reshape(-1))
ce_loss = (ce_s1 + ce_s2) / 2
return ce_loss, ce_s1, ce_s2
def forward(self, x):
return self.proj_s1(x)
def cond_forward(self, x2):
return self.proj_s2(x2)
class FixedEmbedding(nn.Module):
def __init__(self, c_in, d_model):
super(FixedEmbedding, self).__init__()
w = torch.zeros(c_in, d_model).float()
w.require_grad = False
position = torch.arange(0, c_in).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
w[:, 0::2] = torch.sin(position * div_term)
w[:, 1::2] = torch.cos(position * div_term)
self.emb = nn.Embedding(c_in, d_model)
self.emb.weight = nn.Parameter(w, requires_grad=False)
def forward(self, x):
return self.emb(x).detach()
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, learn_pe):
super(TemporalEmbedding, self).__init__()
minute_size = 60
hour_size = 24
weekday_size = 7
day_size = 32
month_size = 13
Embed = FixedEmbedding if not learn_pe else nn.Embedding
self.minute_embed = Embed(minute_size, d_model)
self.hour_embed = Embed(hour_size, d_model)
self.weekday_embed = Embed(weekday_size, d_model)
self.day_embed = Embed(day_size, d_model)
self.month_embed = Embed(month_size, d_model)
def forward(self, x):
x = x.long()
minute_x = self.minute_embed(x[:, :, 0])
hour_x = self.hour_embed(x[:, :, 1])
weekday_x = self.weekday_embed(x[:, :, 2])
day_x = self.day_embed(x[:, :, 3])
month_x = self.month_embed(x[:, :, 4])
return hour_x + weekday_x + day_x + month_x + minute_x