import numpy as np import pandas as pd import torch from huggingface_hub import PyTorchModelHubMixin import sys from tqdm import trange sys.path.append("../") from model.module import * class KronosTokenizer(nn.Module, PyTorchModelHubMixin): """ KronosTokenizer module for tokenizing input data using a hybrid quantization approach. This tokenizer utilizes a combination of encoder and decoder Transformer blocks along with the Binary Spherical Quantization (BSQuantizer) to compress and decompress input data. Args: d_in (int): Input dimension. d_model (int): Model dimension. n_heads (int): Number of attention heads. ff_dim (int): Feed-forward dimension. n_enc_layers (int): Number of encoder layers. n_dec_layers (int): Number of decoder layers. ffn_dropout_p (float): Dropout probability for feed-forward networks. attn_dropout_p (float): Dropout probability for attention mechanisms. resid_dropout_p (float): Dropout probability for residual connections. s1_bits (int): Number of bits for the pre token in BSQuantizer. s2_bits (int): Number of bits for the post token in BSQuantizer. beta (float): Beta parameter for BSQuantizer. gamma0 (float): Gamma0 parameter for BSQuantizer. gamma (float): Gamma parameter for BSQuantizer. zeta (float): Zeta parameter for BSQuantizer. group_size (int): Group size parameter for BSQuantizer. """ def __init__(self, d_in, d_model, n_heads, ff_dim, n_enc_layers, n_dec_layers, ffn_dropout_p, attn_dropout_p, resid_dropout_p, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size): super().__init__() self.d_in = d_in self.d_model = d_model self.n_heads = n_heads self.ff_dim = ff_dim self.enc_layers = n_enc_layers self.dec_layers = n_dec_layers self.ffn_dropout_p = ffn_dropout_p self.attn_dropout_p = attn_dropout_p self.resid_dropout_p = resid_dropout_p self.s1_bits = s1_bits self.s2_bits = s2_bits self.codebook_dim = s1_bits + s2_bits # Total dimension of the codebook after quantization self.embed = nn.Linear(self.d_in, self.d_model) self.head = nn.Linear(self.d_model, self.d_in) # Encoder Transformer Blocks self.encoder = nn.ModuleList([ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) for _ in range(self.enc_layers - 1) ]) # Decoder Transformer Blocks self.decoder = nn.ModuleList([ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) for _ in range(self.dec_layers - 1) ]) self.quant_embed = nn.Linear(in_features=self.d_model, out_features=self.codebook_dim) # Linear layer before quantization self.post_quant_embed_pre = nn.Linear(in_features=self.s1_bits, out_features=self.d_model) # Linear layer after quantization (pre part - s1 bits) self.post_quant_embed = nn.Linear(in_features=self.codebook_dim, out_features=self.d_model) # Linear layer after quantization (full codebook) self.tokenizer = BSQuantizer(self.s1_bits, self.s2_bits, beta, gamma0, gamma, zeta, group_size) # BSQuantizer module def forward(self, x): """ Forward pass of the KronosTokenizer. Args: x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). Returns: tuple: A tuple containing: - tuple: (z_pre, z) - Reconstructed outputs from decoder with s1_bits and full codebook respectively, both of shape (batch_size, seq_len, d_in). - torch.Tensor: bsq_loss - Loss from the BSQuantizer. - torch.Tensor: quantized - Quantized representation from BSQuantizer. - torch.Tensor: z_indices - Indices from the BSQuantizer. """ z = self.embed(x) for layer in self.encoder: z = layer(z) z = self.quant_embed(z) # (B, T, codebook) bsq_loss, quantized, z_indices = self.tokenizer(z) quantized_pre = quantized[:, :, :self.s1_bits] # Extract the first part of quantized representation (s1_bits) z_pre = self.post_quant_embed_pre(quantized_pre) z = self.post_quant_embed(quantized) # Decoder layers (for pre part - s1 bits) for layer in self.decoder: z_pre = layer(z_pre) z_pre = self.head(z_pre) # Decoder layers (for full codebook) for layer in self.decoder: z = layer(z) z = self.head(z) return (z_pre, z), bsq_loss, quantized, z_indices def indices_to_bits(self, x, half=False): """ Converts indices to bit representations and scales them. Args: x (torch.Tensor): Indices tensor. half (bool, optional): Whether to process only half of the codebook dimension. Defaults to False. Returns: torch.Tensor: Bit representation tensor. """ if half: x1 = x[0] # Assuming x is a tuple of indices if half is True x2 = x[1] mask = 2 ** torch.arange(self.codebook_dim//2, device=x1.device, dtype=torch.long) # Create a mask for bit extraction x1 = (x1.unsqueeze(-1) & mask) != 0 # Extract bits for the first half x2 = (x2.unsqueeze(-1) & mask) != 0 # Extract bits for the second half x = torch.cat([x1, x2], dim=-1) # Concatenate the bit representations else: mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) # Create a mask for bit extraction x = (x.unsqueeze(-1) & mask) != 0 # Extract bits x = x.float() * 2 - 1 # Convert boolean to bipolar (-1, 1) q_scale = 1. / (self.codebook_dim ** 0.5) # Scaling factor x = x * q_scale return x def encode(self, x, half=False): """ Encodes the input data into quantized indices. Args: x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). half (bool, optional): Whether to use half quantization in BSQuantizer. Defaults to False. Returns: torch.Tensor: Quantized indices from BSQuantizer. """ z = self.embed(x) for layer in self.encoder: z = layer(z) z = self.quant_embed(z) bsq_loss, quantized, z_indices = self.tokenizer(z, half) return z_indices def decode(self, x, half=False): """ Decodes quantized indices back to the input data space. Args: x (torch.Tensor): Quantized indices tensor. half (bool, optional): Whether the indices were generated with half quantization. Defaults to False. Returns: torch.Tensor: Reconstructed output tensor of shape (batch_size, seq_len, d_in). """ quantized = self.indices_to_bits(x, half) z = self.post_quant_embed(quantized) for layer in self.decoder: z = layer(z) z = self.head(z) return z class Kronos(nn.Module, PyTorchModelHubMixin): """ Kronos Model. Args: s1_bits (int): Number of bits for pre tokens. s2_bits (int): Number of bits for post tokens. n_layers (int): Number of Transformer blocks. d_model (int): Dimension of the model's embeddings and hidden states. n_heads (int): Number of attention heads in the MultiheadAttention layers. ff_dim (int): Dimension of the feedforward network in the Transformer blocks. ffn_dropout_p (float): Dropout probability for the feedforward network. attn_dropout_p (float): Dropout probability for the attention layers. resid_dropout_p (float): Dropout probability for residual connections. token_dropout_p (float): Dropout probability for token embeddings. learn_te (bool): Whether to use learnable temporal embeddings. """ def __init__(self, s1_bits, s2_bits, n_layers, d_model, n_heads, ff_dim, ffn_dropout_p, attn_dropout_p, resid_dropout_p, token_dropout_p, learn_te): super().__init__() self.s1_bits = s1_bits self.s2_bits = s2_bits self.n_layers = n_layers self.d_model = d_model self.n_heads = n_heads self.learn_te = learn_te self.ff_dim = ff_dim self.ffn_dropout_p = ffn_dropout_p self.attn_dropout_p = attn_dropout_p self.resid_dropout_p = resid_dropout_p self.token_dropout_p = token_dropout_p self.s1_vocab_size = 2 ** self.s1_bits self.token_drop = nn.Dropout(self.token_dropout_p) self.embedding = HierarchicalEmbedding(self.s1_bits, self.s2_bits, self.d_model) self.time_emb = TemporalEmbedding(self.d_model, self.learn_te) self.transformer = nn.ModuleList([ TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) for _ in range(self.n_layers) ]) self.norm = RMSNorm(self.d_model) self.dep_layer = DependencyAwareLayer(self.d_model) self.head = DualHead(self.s1_bits, self.s2_bits, self.d_model) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, mean=0, std=self.embedding.d_model ** -0.5) elif isinstance(module, nn.LayerNorm): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) elif isinstance(module, RMSNorm): nn.init.ones_(module.weight) def forward(self, s1_ids, s2_ids, stamp=None, padding_mask=None, use_teacher_forcing=False, s1_targets=None): """ Args: s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. use_teacher_forcing (bool, optional): Whether to use teacher forcing for s1 decoding. Defaults to False. s1_targets (torch.Tensor, optional): Target s1 token IDs for teacher forcing. Shape: [batch_size, seq_len]. Defaults to None. Returns: Tuple[torch.Tensor, torch.Tensor]: - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] - s2_logits: Logits for s2 token predictions, conditioned on s1. Shape: [batch_size, seq_len, s2_vocab_size] """ x = self.embedding([s1_ids, s2_ids]) if stamp is not None: time_embedding = self.time_emb(stamp) x = x + time_embedding x = self.token_drop(x) for layer in self.transformer: x = layer(x, key_padding_mask=padding_mask) x = self.norm(x) s1_logits = self.head(x) if use_teacher_forcing: sibling_embed = self.embedding.emb_s1(s1_targets) else: s1_probs = F.softmax(s1_logits.detach(), dim=-1) sample_s1_ids = torch.multinomial(s1_probs.view(-1, self.s1_vocab_size), 1).view(s1_ids.shape) sibling_embed = self.embedding.emb_s1(sample_s1_ids) x2 = self.dep_layer(x, sibling_embed, key_padding_mask=padding_mask) # Dependency Aware Layer: Condition on s1 embeddings s2_logits = self.head.cond_forward(x2) return s1_logits, s2_logits def decode_s1(self, s1_ids, s2_ids, stamp=None, padding_mask=None): """ Decodes only the s1 tokens. This method performs a forward pass to predict only s1 tokens. It returns the s1 logits and the context representation from the Transformer, which can be used for subsequent s2 decoding. Args: s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. Returns: Tuple[torch.Tensor, torch.Tensor]: - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] - context: Context representation from the Transformer. Shape: [batch_size, seq_len, d_model] """ x = self.embedding([s1_ids, s2_ids]) if stamp is not None: time_embedding = self.time_emb(stamp) x = x + time_embedding x = self.token_drop(x) for layer in self.transformer: x = layer(x, key_padding_mask=padding_mask) x = self.norm(x) s1_logits = self.head(x) return s1_logits, x def decode_s2(self, context, s1_ids, padding_mask=None): """ Decodes the s2 tokens, conditioned on the context and s1 tokens. This method decodes s2 tokens based on a pre-computed context representation (typically from `decode_s1`) and the s1 token IDs. It uses the dependency-aware layer and the conditional s2 head to predict s2 tokens. Args: context (torch.Tensor): Context representation from the transformer (output of decode_s1). Shape: [batch_size, seq_len, d_model] s1_ids (torch.torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. Returns: torch.Tensor: s2 logits. Shape: [batch_size, seq_len, s2_vocab_size] """ sibling_embed = self.embedding.emb_s1(s1_ids) x2 = self.dep_layer(context, sibling_embed, key_padding_mask=padding_mask) return self.head.cond_forward(x2) def top_k_top_p_filtering( logits, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value return logits if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits def sample_from_logits(logits, temperature=1.0, top_k=None, top_p=None, sample_logits=True): logits = logits / temperature if top_k is not None or top_p is not None: if top_k > 0 or top_p < 1.0: logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = F.softmax(logits, dim=-1) if not sample_logits: _, x = top_k(probs, k=1, dim=-1) else: x = torch.multinomial(probs, num_samples=1) return x def auto_regressive_inference(tokenizer, model, x, x_stamp, y_stamp, max_context, pred_len, clip=5, T=1.0, top_k=0, top_p=0.99, sample_count=5, verbose=False): with torch.no_grad(): batch_size = x.size(0) initial_seq_len = x.size(1) x = torch.clip(x, -clip, clip) device = x.device x = x.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x.size(1), x.size(2)).to(device) x_stamp = x_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x_stamp.size(1), x_stamp.size(2)).to(device) y_stamp = y_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, y_stamp.size(1), y_stamp.size(2)).to(device) x_token = tokenizer.encode(x, half=True) def get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, pred_step): if current_seq_len <= max_context - pred_step: return torch.cat([x_stamp, y_stamp[:, :pred_step, :]], dim=1) else: start_idx = max_context - pred_step return torch.cat([x_stamp[:, -start_idx:, :], y_stamp[:, :pred_step, :]], dim=1) if verbose: ran = trange else: ran = range for i in ran(pred_len): current_seq_len = initial_seq_len + i if current_seq_len <= max_context: input_tokens = x_token else: input_tokens = [t[:, -max_context:].contiguous() for t in x_token] current_stamp = get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, i) s1_logits, context = model.decode_s1(input_tokens[0], input_tokens[1], current_stamp) s1_logits = s1_logits[:, -1, :] sample_pre = sample_from_logits(s1_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) s2_logits = model.decode_s2(context, sample_pre) s2_logits = s2_logits[:, -1, :] sample_post = sample_from_logits(s2_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) x_token[0] = torch.cat([x_token[0], sample_pre], dim=1) x_token[1] = torch.cat([x_token[1], sample_post], dim=1) input_tokens = [t[:, -max_context:].contiguous() for t in x_token] z = tokenizer.decode(input_tokens, half=True) z = z.reshape(batch_size, sample_count, z.size(1), z.size(2)) preds = z.cpu().numpy() # preds = np.mean(preds, axis=1) return preds def calc_time_stamps(x_timestamp): time_df = pd.DataFrame() time_df['minute'] = x_timestamp.dt.minute time_df['hour'] = x_timestamp.dt.hour time_df['weekday'] = x_timestamp.dt.weekday time_df['day'] = x_timestamp.dt.day time_df['month'] = x_timestamp.dt.month return time_df class KronosPredictor: def __init__(self, model, tokenizer, device="cuda:0", max_context=512, clip=5): self.tokenizer = tokenizer self.model = model self.max_context = max_context self.clip = clip self.price_cols = ['open', 'high', 'low', 'close'] self.vol_col = 'volume' self.amt_vol = 'amount' self.time_cols = ['minute', 'hour', 'weekday', 'day', 'month'] self.device = device self.tokenizer = self.tokenizer.to(self.device) self.model = self.model.to(self.device) def generate(self, x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose): x_tensor = torch.from_numpy(np.array(x).astype(np.float32)).to(self.device) x_stamp_tensor = torch.from_numpy(np.array(x_stamp).astype(np.float32)).to(self.device) y_stamp_tensor = torch.from_numpy(np.array(y_stamp).astype(np.float32)).to(self.device) preds = auto_regressive_inference(self.tokenizer, self.model, x_tensor, x_stamp_tensor, y_stamp_tensor, self.max_context, pred_len, self.clip, T, top_k, top_p, sample_count, verbose) preds = preds[:, :, -pred_len:, :] return preds def predict(self, df, x_timestamp, y_timestamp, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True): if not isinstance(df, pd.DataFrame): raise ValueError("Input must be a pandas DataFrame.") if not all(col in df.columns for col in self.price_cols): raise ValueError(f"Price columns {self.price_cols} not found in DataFrame.") df = df.copy() if self.vol_col not in df.columns: df[self.vol_col] = 0.0 # Fill missing volume with zeros df[self.amt_vol] = 0.0 # Fill missing amount with zeros if self.amt_vol not in df.columns and self.vol_col in df.columns: df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1) if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any(): raise ValueError("Input DataFrame contains NaN values in price or volume columns.") x_time_df = calc_time_stamps(x_timestamp) y_time_df = calc_time_stamps(y_timestamp) x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32) x_stamp = x_time_df.values.astype(np.float32) y_stamp = y_time_df.values.astype(np.float32) x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0) x = (x - x_mean) / (x_std + 1e-5) x = np.clip(x, -self.clip, self.clip) x = x[np.newaxis, :] x_stamp = x_stamp[np.newaxis, :] y_stamp = y_stamp[np.newaxis, :] preds = self.generate(x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose) preds = preds.squeeze(0) preds = preds * (x_std[np.newaxis, :] + 1e-5) + x_mean[np.newaxis, :] close_preds = preds[:, :, 3].swapaxes(0, 1) volume_preds = preds[:, :, 4].swapaxes(0, 1) close_df = pd.DataFrame(close_preds, columns=[f"pred-{i+1}" for i in range(sample_count)], index=y_timestamp) volume_df = pd.DataFrame(volume_preds, columns=[f"pred-{i + 1}" for i in range(sample_count)], index=y_timestamp) return close_df, volume_df