import gc import os import re import subprocess import time from datetime import datetime, timezone, timedelta from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from binance.client import Client from model import KronosTokenizer, Kronos, KronosPredictor # --- Configuration --- # 适配使用本地模型的配置 Config = { # 项目根目录(保持不变,用于定位其他资源) "REPO_PATH": Path(__file__).parent.resolve(), # 本地模型存储路径(需将模型文件放在该目录下) "LOCAL_MODEL_PATH": os.path.join(Path(__file__).parent.resolve(), "models"), # 交易对和时间间隔(保持原配置) "SYMBOL": "BTCUSDT", "INTERVAL": "1h", # 数据和预测参数(根据 Spaces 资源调整) "HIST_POINTS": 360, "PRED_HORIZON": 24, "N_PREDICTIONS": 10, "VOL_WINDOW": 24, # 新增:缓存预测结果路径(使用 /tmp 目录) "PREDICTION_CACHE": os.path.join("/tmp", "predictions_cache"), # 新增:图表保存路径(确保在可写目录) "CHART_PATH": os.path.join(Path(__file__).parent.resolve(), "prediction_chart.png") } # 确保缓存目录存在 os.makedirs(Config["PREDICTION_CACHE"], exist_ok=True) # 确保本地模型目录存在 os.makedirs(Config["LOCAL_MODEL_PATH"], exist_ok=True) def load_local_model(): """从本地加载Kronos模型和分词器""" print("Loading local Kronos model...") # 本地分词器路径 tokenizer_path = os.path.join(Config["LOCAL_MODEL_PATH"], "tokenizer") # 本地模型路径 model_path = os.path.join(Config["LOCAL_MODEL_PATH"], "model") # 检查路径是否存在 if not os.path.exists(tokenizer_path): raise FileNotFoundError(f"Tokenizer path {tokenizer_path} does not exist. Please place tokenizer files here.") if not os.path.exists(model_path): raise FileNotFoundError(f"Model path {model_path} does not exist. Please place model files here.") tokenizer = KronosTokenizer.from_pretrained(tokenizer_path) model = Kronos.from_pretrained(model_path) tokenizer.eval() model.eval() predictor = KronosPredictor(model, tokenizer, device="cpu", max_context=512) print("Local model loaded successfully.") return predictor def make_prediction(df, predictor): """Generates probabilistic forecasts using the Kronos model.""" last_timestamp = df['timestamps'].max() start_new_range = last_timestamp + pd.Timedelta(hours=1) new_timestamps_index = pd.date_range( start=start_new_range, periods=Config["PRED_HORIZON"], freq='H' ) y_timestamp = pd.Series(new_timestamps_index, name='y_timestamp') x_timestamp = df['timestamps'] x_df = df[['open', 'high', 'low', 'close', 'volume', 'amount']] with torch.no_grad(): print("Making main prediction (T=1.0)...") begin_time = time.time() close_preds_main, volume_preds_main = predictor.predict( df=x_df, x_timestamp=x_timestamp, y_timestamp=y_timestamp, pred_len=Config["PRED_HORIZON"], T=1.0, top_p=0.95, sample_count=Config["N_PREDICTIONS"], verbose=True ) print(f"Main prediction completed in {time.time() - begin_time:.2f} seconds.") close_preds_volatility = close_preds_main return close_preds_main, volume_preds_main, close_preds_volatility def fetch_binance_data(): """Fetches K-line data from the Binance public API.""" symbol, interval = Config["SYMBOL"], Config["INTERVAL"] limit = Config["HIST_POINTS"] + Config["VOL_WINDOW"] print(f"Fetching {limit} bars of {symbol} {interval} data from Binance...") # 关键修复:为当前线程创建并设置asyncio事件循环 import asyncio loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # 初始化Binance客户端 client = Client() klines = client.get_klines(symbol=symbol, interval=interval, limit=limit) # 后续数据处理逻辑保持不变... cols = ['open_time', 'open', 'high', 'low', 'close', 'volume', 'close_time', 'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume', 'taker_buy_quote_asset_volume', 'ignore'] df = pd.DataFrame(klines, columns=cols) df = df[['open_time', 'open', 'high', 'low', 'close', 'volume', 'quote_asset_volume']] df.rename(columns={'quote_asset_volume': 'amount', 'open_time': 'timestamps'}, inplace=True) df['timestamps'] = pd.to_datetime(df['timestamps'], unit='ms') for col in ['open', 'high', 'low', 'close', 'volume', 'amount']: df[col] = pd.to_numeric(df[col]) print("Data fetched successfully.") return df def calculate_metrics(hist_df, close_preds_df, v_close_preds_df): """ Calculates upside and volatility amplification probabilities for the 24h horizon. """ last_close = hist_df['close'].iloc[-1] # 1. Upside Probability (for the 24-hour horizon) final_hour_preds = close_preds_df.iloc[-1] upside_prob = (final_hour_preds > last_close).mean() # 2. Volatility Amplification Probability (over the 24-hour horizon) hist_log_returns = np.log(hist_df['close'] / hist_df['close'].shift(1)) historical_vol = hist_log_returns.iloc[-Config["VOL_WINDOW"]:].std() amplification_count = 0 for col in v_close_preds_df.columns: full_sequence = pd.concat([pd.Series([last_close]), v_close_preds_df[col]]).reset_index(drop=True) pred_log_returns = np.log(full_sequence / full_sequence.shift(1)) predicted_vol = pred_log_returns.std() if predicted_vol > historical_vol: amplification_count += 1 vol_amp_prob = amplification_count / len(v_close_preds_df.columns) print(f"Upside Probability (24h): {upside_prob:.2%}, Volatility Amplification Probability: {vol_amp_prob:.2%}") return upside_prob, vol_amp_prob def create_plot(hist_df, close_preds_df, volume_preds_df): """Generates and saves a comprehensive forecast chart.""" print("Generating comprehensive forecast chart...") fig, (ax1, ax2) = plt.subplots( 2, 1, figsize=(15, 10), sharex=True, gridspec_kw={'height_ratios': [3, 1]} ) hist_time = hist_df['timestamps'] last_hist_time = hist_time.iloc[-1] pred_time = pd.to_datetime([last_hist_time + timedelta(hours=i + 1) for i in range(len(close_preds_df))]) ax1.plot(hist_time, hist_df['close'], color='royalblue', label='Historical Price', linewidth=1.5) mean_preds = close_preds_df.mean(axis=1) ax1.plot(pred_time, mean_preds, color='darkorange', linestyle='-', label='Mean Forecast') ax1.fill_between(pred_time, close_preds_df.min(axis=1), close_preds_df.max(axis=1), color='darkorange', alpha=0.2, label='Forecast Range (Min-Max)') ax1.set_title(f'{Config["SYMBOL"]} Probabilistic Price & Volume Forecast (Next {Config["PRED_HORIZON"]} Hours)', fontsize=16, weight='bold') ax1.set_ylabel('Price (USDT)') ax1.legend() ax1.grid(True, which='both', linestyle='--', linewidth=0.5) ax2.bar(hist_time, hist_df['volume'], color='skyblue', label='Historical Volume', width=0.03) ax2.bar(pred_time, volume_preds_df.mean(axis=1), color='sandybrown', label='Mean Forecasted Volume', width=0.03) ax2.set_ylabel('Volume') ax2.set_xlabel('Time (UTC)') ax2.legend() ax2.grid(True, which='both', linestyle='--', linewidth=0.5) separator_time = hist_time.iloc[-1] + timedelta(minutes=30) for ax in [ax1, ax2]: ax.axvline(x=separator_time, color='red', linestyle='--', linewidth=1.5, label='_nolegend_') ax.tick_params(axis='x', rotation=30) fig.tight_layout() chart_path = Config["REPO_PATH"] / 'prediction_chart.png' fig.savefig(chart_path, dpi=120) plt.close(fig) print(f"Chart saved to: {chart_path}") def update_html(upside_prob, vol_amp_prob): """ Updates the index.html file with the latest metrics and timestamp. """ print("Updating index.html...") html_path = Config["REPO_PATH"] / 'index.html' now_utc_str = datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S') upside_prob_str = f'{upside_prob:.1%}' vol_amp_prob_str = f'{vol_amp_prob:.1%}' with open(html_path, 'r', encoding='utf-8') as f: content = f.read() # Robustly replace content using lambda functions content = re.sub( r'().*?()', lambda m: f'{m.group(1)}{now_utc_str}{m.group(2)}', content ) content = re.sub( r'(

).*?(

)', lambda m: f'{m.group(1)}{upside_prob_str}{m.group(2)}', content ) content = re.sub( r'(

).*?(

)', lambda m: f'{m.group(1)}{vol_amp_prob_str}{m.group(2)}', content ) with open(html_path, 'w', encoding='utf-8') as f: f.write(content) print("HTML file updated successfully.") def git_commit_and_push(commit_message): """Adds, commits, and pushes specified files to the Git repository.""" print("Performing Git operations...") try: os.chdir(Config["REPO_PATH"]) subprocess.run(['git', 'add', 'prediction_chart.png', 'index.html'], check=True, capture_output=True, text=True) commit_result = subprocess.run(['git', 'commit', '-m', commit_message], check=True, capture_output=True, text=True) print(commit_result.stdout) push_result = subprocess.run(['git', 'push'], check=True, capture_output=True, text=True) print(push_result.stdout) print("Git push successful.") except subprocess.CalledProcessError as e: output = e.stdout if e.stdout else e.stderr if "nothing to commit" in output or "Your branch is up to date" in output: print("No new changes to commit or push.") else: print(f"A Git error occurred:\n--- STDOUT ---\n{e.stdout}\n--- STDERR ---\n{e.stderr}") def main_task(model): """Executes one full update cycle.""" print("\n" + "=" * 60 + f"\nStarting update task at {datetime.now(timezone.utc)}\n" + "=" * 60) df_full = fetch_binance_data() df_for_model = df_full.iloc[:-1] close_preds, volume_preds, v_close_preds = make_prediction(df_for_model, model) hist_df_for_plot = df_for_model.tail(Config["HIST_POINTS"]) hist_df_for_metrics = df_for_model.tail(Config["VOL_WINDOW"]) upside_prob, vol_amp_prob = calculate_metrics(hist_df_for_metrics, close_preds, v_close_preds) create_plot(hist_df_for_plot, close_preds, volume_preds) update_html(upside_prob, vol_amp_prob) commit_message = f"Auto-update forecast for {datetime.now(timezone.utc):%Y-%m-%d %H:%M} UTC" git_commit_and_push(commit_message) # --- 新增的内存清理步骤 --- # 显式删除大的DataFrame对象,帮助垃圾回收器 del df_full, df_for_model, close_preds, volume_preds, v_close_preds del hist_df_for_plot, hist_df_for_metrics # 强制执行垃圾回收 gc.collect() # --- 内存清理结束 --- print("-" * 60 + "\n--- Task completed successfully ---\n" + "-" * 60 + "\n") def run_scheduler(model): """A continuous scheduler that runs the main task hourly.""" while True: now = datetime.now(timezone.utc) next_run_time = (now + timedelta(hours=1)).replace(minute=0, second=5, microsecond=0) sleep_seconds = (next_run_time - now).total_seconds() if sleep_seconds > 0: print(f"Current time: {now:%Y-%m-%d %H:%M:%S UTC}.") print(f"Next run at: {next_run_time:%Y-%m-%d %H:%M:%S UTC}. Waiting for {sleep_seconds:.0f} seconds...") time.sleep(sleep_seconds) try: main_task(model) except Exception as e: print(f"\n!!!!!! A critical error occurred in the main task !!!!!!!") print(f"Error: {e}") import traceback traceback.print_exc() print("Retrying in 5 minutes...") print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n") time.sleep(300) if __name__ == '__main__': # 确保本地模型目录存在 local_model_path = Path(Config["LOCAL_MODEL_PATH"]) local_model_path.mkdir(parents=True, exist_ok=True) loaded_model = load_local_model() main_task(loaded_model) # Run once on startup run_scheduler(loaded_model) # Start the schedule