import gradio as gr from embed import gen_embedding def generate_embeddings(sequences, plm_model): embeddings = gen_embedding(sequences, plm_model=plm_model) return embeddings.tolist() demo = gr.Interface( fn=generate_embeddings, inputs=[ "text", gr.Dropdown(choices=["esm1b", "esm2", "prott5", "prostt5"], label="PLM Model") ], outputs="text" ) demo.launch()