ZenCtrl / app.py
ultimaxxl's picture
Fix: add concurrency limit to the click event
56ced22 verified
raw
history blame
11.5 kB
import os
import base64
import io
from typing import TypedDict
import requests
import gradio as gr
from PIL import Image
# Read Baseten configuration from environment variables.
BTEN_API_KEY = os.getenv("API_KEY")
URL = os.getenv("URL")
def image_to_base64(image: Image.Image) -> str:
"""Convert a PIL image to a base64-encoded PNG string."""
with io.BytesIO() as buffer:
image.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")
def ensure_image(img) -> Image.Image:
"""
Ensure the input is a PIL Image.
If it's already a PIL Image, return it.
If it's a string (file path), open it.
If it's a dict with a "name" key, open the file at that path.
"""
if isinstance(img, Image.Image):
return img
elif isinstance(img, str):
return Image.open(img)
elif isinstance(img, dict) and "name" in img:
return Image.open(img["name"])
else:
raise ValueError("Cannot convert input to a PIL Image.")
def call_baseten_generate(
image: Image.Image,
prompt: str,
steps: int,
strength: float,
height: int,
width: int,
lora_name: str,
remove_bg: bool,
) -> Image.Image | None:
"""
Call the Baseten /predict endpoint with provided parameters and return the generated image.
"""
image = ensure_image(image)
b64_image = image_to_base64(image)
payload = {
"image": b64_image,
"prompt": prompt,
"steps": steps,
"strength": strength,
"height": height,
"width": width,
"lora_name": lora_name,
"bgrm": remove_bg,
}
if not BTEN_API_KEY:
headers = {"Authorization": f"Api-Key {os.getenv('API_KEY')}"}
else:
headers = {"Authorization": f"Api-Key {BTEN_API_KEY}"}
try:
if not URL:
raise ValueError("The URL environment variable is not set.")
response = requests.post(URL, headers=headers, json=payload)
if response.status_code == 200:
data = response.json()
gen_b64 = data.get("generated_image", None)
if gen_b64:
return Image.open(io.BytesIO(base64.b64decode(gen_b64)))
else:
return None
else:
print(f"Error: HTTP {response.status_code}\n{response.text}")
return None
except Exception as e:
print(f"Error: {e}")
return None
# Mode defaults for each tab.
Mode = TypedDict(
"Mode",
{
"model": str,
"prompt": str,
"default_strength": float,
"default_height": int,
"default_width": int,
"models": list[str],
"remove_bg": bool,
},
)
MODE_DEFAULTS: dict[str, Mode] = {
"Subject Generation": {
"model": "subject_99000_512",
"prompt": "A detailed portrait with soft lighting",
"default_strength": 1.2,
"default_height": 512,
"default_width": 512,
"models": [
"zendsd_512_146000",
"subject_99000_512",
# "zen_pers_11000",
"zen_26000_512",
],
"remove_bg": True,
},
"Background Generation": {
"model": "bg_canny_58000_1024",
"prompt": "A vibrant background with dynamic lighting and textures",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": [
"bgwlight_15000_1024",
# "rmgb_12000_1024",
"bg_canny_58000_1024",
# "gen_back_3000_1024",
"gen_back_7000_1024",
# "gen_bckgnd_18000_512",
# "gen_bckgnd_18000_512",
# "loose_25000_512",
# "looser_23000_1024",
# "looser_bg_gen_21000_1280",
# "old_looser_46000_1024",
# "relight_bg_gen_31000_1024",
],
"remove_bg": True,
},
"Canny": {
"model": "canny_21000_1024",
"prompt": "A futuristic cityscape with neon lights",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["canny_21000_1024"],
"remove_bg": True,
},
"Depth": {
"model": "depth_9800_1024",
"prompt": "A scene with pronounced depth and perspective",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": [
"depth_9800_1024",
],
"remove_bg": True,
},
"Deblurring": {
"model": "deblurr_1024_10000",
"prompt": "A scene with pronounced depth and perspective",
"default_strength": 1.2,
"default_height": 1024,
"default_width": 1024,
"models": ["deblurr_1024_10000"], # "slight_deblurr_18000",
"remove_bg": False,
},
}
header = """
<h1>🌍 ZenCtrl / FLUX</h1>
<div align="center" style="line-height: 1;">
<a href="https://github.com/FotographerAI/ZenCtrl/tree/main" target="_blank" style="margin: 2px;" name="github_repo_link"><img src="https://img.shields.io/badge/GitHub-Repo-181717.svg" alt="GitHub Repo" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank" name="huggingface_space_link"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace Space" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank" style="margin: 2px;" name="discord_link"><img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://fotographer.ai/" target="_blank" style="margin: 2px;" name="lp_link"><img src="https://img.shields.io/badge/Website-Landing_Page-blue" alt="LP" style="display: inline-block; vertical-align: middle;"></a>
<a href="https://x.com/FotographerAI" target="_blank" style="margin: 2px;" name="twitter_link"><img src="https://img.shields.io/twitter/follow/FotographerAI?style=social" alt="X" style="display: inline-block; vertical-align: middle;"></a>
</div>
"""
defaults = MODE_DEFAULTS["Subject Generation"]
with gr.Blocks(title="🌍 ZenCtrl") as demo:
gr.HTML(header)
gr.Markdown(
"""
# ZenCtrl Demo
[WIP] One Agent to Generate multi-view, diverse-scene, and task-specific high-resolution images from a single subject image—without fine-tuning.
We are first releasing some of the task specific weights and will release the codes soon.
The goal is to unify all of the visual content generation tasks with a single LLM...
**Modes:**
- **Subject Generation:** Focuses on generating detailed subject portraits.
- **Background Generation:** Creates dynamic, vibrant backgrounds:
You can generate part of the image from sketch while keeping part of it as it is.
- **Canny:** Emphasizes strong edge detection.
- **Depth:** Produces images with realistic depth and perspective.
For more details, shoot us a message on discord.
"""
)
with gr.Tabs():
for mode in MODE_DEFAULTS:
with gr.Tab(mode):
defaults = MODE_DEFAULTS[mode]
gr.Markdown(f"### {mode} Mode")
gr.Markdown(f"**Default Model:** {defaults['model']}")
with gr.Row():
with gr.Column(scale=2, min_width=370):
input_image = gr.Image(
label="Upload Image",
type="pil",
scale=3,
height=370,
min_width=100,
)
generate_button = gr.Button("Generate")
with gr.Blocks(title="Options"):
model_dropdown = gr.Dropdown(
label="Model",
choices=defaults["models"],
value=defaults["model"],
interactive=True,
)
remove_bg_checkbox = gr.Checkbox(
label="Remove Background", value=defaults["remove_bg"]
)
with gr.Column(scale=2):
output_image = gr.Image(
label="Generated Image",
type="pil",
height=573,
scale=4,
min_width=100,
)
gr.Markdown("#### Prompt")
prompt_box = gr.Textbox(
label="Prompt", value=defaults["prompt"], lines=2
)
# Wrap generation parameters in an Accordion for collapsible view.
with gr.Accordion("Generation Parameters", open=False):
with gr.Row():
step_slider = gr.Slider(
minimum=2, maximum=28, value=2, step=2, label="Steps"
)
strength_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=defaults["default_strength"],
step=0.1,
label="Strength",
)
with gr.Row():
height_slider = gr.Slider(
minimum=512,
maximum=1360,
value=defaults["default_height"],
step=1,
label="Height",
)
width_slider = gr.Slider(
minimum=512,
maximum=1360,
value=defaults["default_width"],
step=1,
label="Width",
)
def on_generate_click(
model_name,
prompt,
steps,
strength,
height,
width,
remove_bg,
image,
):
return call_baseten_generate(
image,
prompt,
steps,
strength,
height,
width,
model_name,
remove_bg,
)
generate_button.click(
fn=on_generate_click,
inputs=[
model_dropdown,
prompt_box,
step_slider,
strength_slider,
height_slider,
width_slider,
remove_bg_checkbox,
input_image,
],
outputs=[output_image],
concurrency_limit=None
)
if __name__ == "__main__":
demo.launch()