Spaces:
Running
on
Zero
Add examples modes (#4)
Browse files- Update app.py (4d1b1fe30d42871efcea779217e874a8348a3209)
- Run Black formatter (7f7588e48cea7178916d11b3f3634b948c3dcf60)
- Move examples dictionary to examples_db (0c6a3710cbbdf3fddb60cb030ddc9da71919f7ad)
- Replace Dataset by Examples (7c276e82d1907d65f3b154d65a49b16ec2a787ed)
- Add images to lfs (11fa7472b5fc42c51133bfaaa8ff90aa8b4ec5f3)
- Add background images examples (a90338fa31dbb02dbe498c9e16e52846579d779a)
- comment out canny, depth and deblur examples (ea4c9b35107d65bcdbc47552a8fffb9a9e237346)
- Add Subject Generation images (7adbc62c3965e7ccf9c17f80e0ebf3352a57d20f)
- Update subject generation examples (7266d6367b2f8c20adeda111c53fdb9e6ad51b6c)
- add conditional to display examples (ae4669bccf7b0534deb37b8ea39e78677006c659)
- delete example (166b0767dd98008f82fdcc5a099e556c23bc3f28)
- Reorganize tabs (61480b4ce9e6141da5c89f6871cb441327dd9552)
- Step slider default to 10 (55244f639dc92b5ae59a8c40edceb634851644d3)
Co-authored-by: fmarcano <[email protected]>
- .gitattributes +3 -0
- app.py +43 -103
- examples_db.py +108 -0
- imgs/bg_i1.png +3 -0
- imgs/bg_i2.png +3 -0
- imgs/bg_i3.png +3 -0
- imgs/bg_i4.png +3 -0
- imgs/bg_i5.png +3 -0
- imgs/bg_o1.png +3 -0
- imgs/bg_o2.png +3 -0
- imgs/bg_o3.jpg +3 -0
- imgs/bg_o4.jpg +3 -0
- imgs/bg_o5.jpg +3 -0
- imgs/sub_i1.png +3 -0
- imgs/sub_i2.png +3 -0
- imgs/sub_i3.png +3 -0
- imgs/sub_i4.png +3 -0
- imgs/sub_i5.png +3 -0
- imgs/sub_o1.webp +3 -0
- imgs/sub_o2.webp +3 -0
- imgs/sub_o3.webp +3 -0
- imgs/sub_o4.webp +3 -0
- imgs/sub_o5.webp +3 -0
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
@@ -6,24 +6,20 @@ import requests
|
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
8 |
|
|
|
|
|
9 |
# Read Baseten configuration from environment variables.
|
10 |
BTEN_API_KEY = os.getenv("API_KEY")
|
11 |
URL = os.getenv("URL")
|
12 |
|
|
|
13 |
def image_to_base64(image: Image.Image) -> str:
|
14 |
-
"""Convert a PIL image to a base64-encoded PNG string."""
|
15 |
with io.BytesIO() as buffer:
|
16 |
image.save(buffer, format="PNG")
|
17 |
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
18 |
|
19 |
|
20 |
def ensure_image(img) -> Image.Image:
|
21 |
-
"""
|
22 |
-
Ensure the input is a PIL Image.
|
23 |
-
If it's already a PIL Image, return it.
|
24 |
-
If it's a string (file path), open it.
|
25 |
-
If it's a dict with a "name" key, open the file at that path.
|
26 |
-
"""
|
27 |
if isinstance(img, Image.Image):
|
28 |
return img
|
29 |
elif isinstance(img, str):
|
@@ -44,9 +40,6 @@ def call_baseten_generate(
|
|
44 |
lora_name: str,
|
45 |
remove_bg: bool,
|
46 |
) -> Image.Image | None:
|
47 |
-
"""
|
48 |
-
Call the Baseten /predict endpoint with provided parameters and return the generated image.
|
49 |
-
"""
|
50 |
image = ensure_image(image)
|
51 |
b64_image = image_to_base64(image)
|
52 |
payload = {
|
@@ -59,14 +52,10 @@ def call_baseten_generate(
|
|
59 |
"lora_name": lora_name,
|
60 |
"bgrm": remove_bg,
|
61 |
}
|
62 |
-
|
63 |
-
headers = {"Authorization": f"Api-Key {os.getenv('API_KEY')}"}
|
64 |
-
else:
|
65 |
-
headers = {"Authorization": f"Api-Key {BTEN_API_KEY}"}
|
66 |
try:
|
67 |
if not URL:
|
68 |
raise ValueError("The URL environment variable is not set.")
|
69 |
-
|
70 |
response = requests.post(URL, headers=headers, json=payload)
|
71 |
if response.status_code == 200:
|
72 |
data = response.json()
|
@@ -83,7 +72,7 @@ def call_baseten_generate(
|
|
83 |
return None
|
84 |
|
85 |
|
86 |
-
#
|
87 |
|
88 |
Mode = TypedDict(
|
89 |
"Mode",
|
@@ -99,40 +88,22 @@ Mode = TypedDict(
|
|
99 |
)
|
100 |
|
101 |
MODE_DEFAULTS: dict[str, Mode] = {
|
102 |
-
"Subject Generation": {
|
103 |
-
"model": "subject_99000_512",
|
104 |
-
"prompt": "A detailed portrait with soft lighting",
|
105 |
-
"default_strength": 1.2,
|
106 |
-
"default_height": 512,
|
107 |
-
"default_width": 512,
|
108 |
-
"models": [
|
109 |
-
"zendsd_512_146000",
|
110 |
-
"subject_99000_512",
|
111 |
-
# "zen_pers_11000",
|
112 |
-
"zen_26000_512",
|
113 |
-
],
|
114 |
-
"remove_bg": True,
|
115 |
-
},
|
116 |
"Background Generation": {
|
117 |
"model": "bg_canny_58000_1024",
|
118 |
"prompt": "A vibrant background with dynamic lighting and textures",
|
119 |
"default_strength": 1.2,
|
120 |
"default_height": 1024,
|
121 |
"default_width": 1024,
|
122 |
-
"models": [
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# "looser_bg_gen_21000_1280",
|
133 |
-
# "old_looser_46000_1024",
|
134 |
-
# "relight_bg_gen_31000_1024",
|
135 |
-
],
|
136 |
"remove_bg": True,
|
137 |
},
|
138 |
"Canny": {
|
@@ -150,9 +121,7 @@ MODE_DEFAULTS: dict[str, Mode] = {
|
|
150 |
"default_strength": 1.2,
|
151 |
"default_height": 1024,
|
152 |
"default_width": 1024,
|
153 |
-
"models": [
|
154 |
-
"depth_9800_1024",
|
155 |
-
],
|
156 |
"remove_bg": True,
|
157 |
},
|
158 |
"Deblurring": {
|
@@ -161,63 +130,42 @@ MODE_DEFAULTS: dict[str, Mode] = {
|
|
161 |
"default_strength": 1.2,
|
162 |
"default_height": 1024,
|
163 |
"default_width": 1024,
|
164 |
-
"models": ["deblurr_1024_10000"],
|
165 |
"remove_bg": False,
|
166 |
},
|
167 |
}
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
header = """
|
171 |
<h1>🌍 ZenCtrl / FLUX</h1>
|
172 |
<div align="center" style="line-height: 1;">
|
173 |
-
<a href="https://github.com/FotographerAI/ZenCtrl/tree/main" target="_blank"
|
174 |
-
<a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank"
|
175 |
-
<a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank"
|
176 |
-
<a href="https://fotographer.ai/" target="_blank" style="margin: 2px;" name="lp_link"><img src="https://img.shields.io/badge/Website-Landing_Page-blue" alt="LP" style="display: inline-block; vertical-align: middle;"></a>
|
177 |
-
<a href="https://x.com/FotographerAI" target="_blank" style="margin: 2px;" name="twitter_link"><img src="https://img.shields.io/twitter/follow/FotographerAI?style=social" alt="X" style="display: inline-block; vertical-align: middle;"></a>
|
178 |
</div>
|
179 |
"""
|
180 |
|
181 |
-
defaults = MODE_DEFAULTS["Subject Generation"]
|
182 |
-
|
183 |
-
|
184 |
with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
185 |
gr.HTML(header)
|
186 |
-
gr.Markdown(
|
187 |
-
|
188 |
-
# ZenCtrl Demo
|
189 |
-
[WIP] One Agent to Generate multi-view, diverse-scene, and task-specific high-resolution images from a single subject image—without fine-tuning.
|
190 |
-
We are first releasing some of the task specific weights and will release the codes soon.
|
191 |
-
The goal is to unify all of the visual content generation tasks with a single LLM...
|
192 |
-
|
193 |
-
**Modes:**
|
194 |
-
- **Subject Generation:** Focuses on generating detailed subject portraits.
|
195 |
-
- **Background Generation:** Creates dynamic, vibrant backgrounds:
|
196 |
-
You can generate part of the image from sketch while keeping part of it as it is.
|
197 |
-
- **Canny:** Emphasizes strong edge detection.
|
198 |
-
- **Depth:** Produces images with realistic depth and perspective.
|
199 |
-
|
200 |
-
For more details, shoot us a message on discord.
|
201 |
-
"""
|
202 |
-
)
|
203 |
with gr.Tabs():
|
204 |
for mode in MODE_DEFAULTS:
|
205 |
with gr.Tab(mode):
|
206 |
defaults = MODE_DEFAULTS[mode]
|
207 |
gr.Markdown(f"### {mode} Mode")
|
208 |
-
gr.Markdown(f"**Default Model:** {defaults['model']}")
|
209 |
|
210 |
with gr.Row():
|
211 |
-
with gr.Column(scale=2
|
212 |
-
input_image = gr.Image(
|
213 |
-
label="Upload Image",
|
214 |
-
type="pil",
|
215 |
-
scale=3,
|
216 |
-
height=370,
|
217 |
-
min_width=100,
|
218 |
-
)
|
219 |
generate_button = gr.Button("Generate")
|
220 |
-
with gr.Blocks(
|
221 |
model_dropdown = gr.Dropdown(
|
222 |
label="Model",
|
223 |
choices=defaults["models"],
|
@@ -229,24 +177,16 @@ with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
|
229 |
)
|
230 |
|
231 |
with gr.Column(scale=2):
|
232 |
-
output_image = gr.Image(
|
233 |
-
label="Generated Image",
|
234 |
-
type="pil",
|
235 |
-
height=573,
|
236 |
-
scale=4,
|
237 |
-
min_width=100,
|
238 |
-
)
|
239 |
|
240 |
-
gr.Markdown("#### Prompt")
|
241 |
prompt_box = gr.Textbox(
|
242 |
label="Prompt", value=defaults["prompt"], lines=2
|
243 |
)
|
244 |
|
245 |
-
# Wrap generation parameters in an Accordion for collapsible view.
|
246 |
with gr.Accordion("Generation Parameters", open=False):
|
247 |
with gr.Row():
|
248 |
step_slider = gr.Slider(
|
249 |
-
minimum=2, maximum=28, value=
|
250 |
)
|
251 |
strength_slider = gr.Slider(
|
252 |
minimum=0.5,
|
@@ -272,14 +212,7 @@ with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
|
272 |
)
|
273 |
|
274 |
def on_generate_click(
|
275 |
-
model_name,
|
276 |
-
prompt,
|
277 |
-
steps,
|
278 |
-
strength,
|
279 |
-
height,
|
280 |
-
width,
|
281 |
-
remove_bg,
|
282 |
-
image,
|
283 |
):
|
284 |
return call_baseten_generate(
|
285 |
image,
|
@@ -305,9 +238,16 @@ with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
|
305 |
input_image,
|
306 |
],
|
307 |
outputs=[output_image],
|
308 |
-
concurrency_limit=None
|
309 |
)
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
-
demo.launch()
|
|
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
8 |
|
9 |
+
import examples_db
|
10 |
+
|
11 |
# Read Baseten configuration from environment variables.
|
12 |
BTEN_API_KEY = os.getenv("API_KEY")
|
13 |
URL = os.getenv("URL")
|
14 |
|
15 |
+
|
16 |
def image_to_base64(image: Image.Image) -> str:
|
|
|
17 |
with io.BytesIO() as buffer:
|
18 |
image.save(buffer, format="PNG")
|
19 |
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
20 |
|
21 |
|
22 |
def ensure_image(img) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if isinstance(img, Image.Image):
|
24 |
return img
|
25 |
elif isinstance(img, str):
|
|
|
40 |
lora_name: str,
|
41 |
remove_bg: bool,
|
42 |
) -> Image.Image | None:
|
|
|
|
|
|
|
43 |
image = ensure_image(image)
|
44 |
b64_image = image_to_base64(image)
|
45 |
payload = {
|
|
|
52 |
"lora_name": lora_name,
|
53 |
"bgrm": remove_bg,
|
54 |
}
|
55 |
+
headers = {"Authorization": f"Api-Key {BTEN_API_KEY or os.getenv('API_KEY')}"}
|
|
|
|
|
|
|
56 |
try:
|
57 |
if not URL:
|
58 |
raise ValueError("The URL environment variable is not set.")
|
|
|
59 |
response = requests.post(URL, headers=headers, json=payload)
|
60 |
if response.status_code == 200:
|
61 |
data = response.json()
|
|
|
72 |
return None
|
73 |
|
74 |
|
75 |
+
# ================== MODE CONFIG =====================
|
76 |
|
77 |
Mode = TypedDict(
|
78 |
"Mode",
|
|
|
88 |
)
|
89 |
|
90 |
MODE_DEFAULTS: dict[str, Mode] = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"Background Generation": {
|
92 |
"model": "bg_canny_58000_1024",
|
93 |
"prompt": "A vibrant background with dynamic lighting and textures",
|
94 |
"default_strength": 1.2,
|
95 |
"default_height": 1024,
|
96 |
"default_width": 1024,
|
97 |
+
"models": ["bgwlight_15000_1024", "bg_canny_58000_1024", "gen_back_7000_1024"],
|
98 |
+
"remove_bg": True,
|
99 |
+
},
|
100 |
+
"Subject Generation": {
|
101 |
+
"model": "subject_99000_512",
|
102 |
+
"prompt": "A detailed portrait with soft lighting",
|
103 |
+
"default_strength": 1.2,
|
104 |
+
"default_height": 512,
|
105 |
+
"default_width": 512,
|
106 |
+
"models": ["zendsd_512_146000", "subject_99000_512", "zen_26000_512"],
|
|
|
|
|
|
|
|
|
107 |
"remove_bg": True,
|
108 |
},
|
109 |
"Canny": {
|
|
|
121 |
"default_strength": 1.2,
|
122 |
"default_height": 1024,
|
123 |
"default_width": 1024,
|
124 |
+
"models": ["depth_9800_1024"],
|
|
|
|
|
125 |
"remove_bg": True,
|
126 |
},
|
127 |
"Deblurring": {
|
|
|
130 |
"default_strength": 1.2,
|
131 |
"default_height": 1024,
|
132 |
"default_width": 1024,
|
133 |
+
"models": ["deblurr_1024_10000"],
|
134 |
"remove_bg": False,
|
135 |
},
|
136 |
}
|
137 |
|
138 |
+
# ================== PRESET EXAMPLES =====================
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# ================== UI =====================
|
144 |
|
145 |
header = """
|
146 |
<h1>🌍 ZenCtrl / FLUX</h1>
|
147 |
<div align="center" style="line-height: 1;">
|
148 |
+
<a href="https://github.com/FotographerAI/ZenCtrl/tree/main" target="_blank"><img src="https://img.shields.io/badge/GitHub-Repo-181717.svg"></a>
|
149 |
+
<a href="https://huggingface.co/spaces/fotographerai/ZenCtrl" target="_blank"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg"></a>
|
150 |
+
<a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank"><img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord"></a>
|
|
|
|
|
151 |
</div>
|
152 |
"""
|
153 |
|
|
|
|
|
|
|
154 |
with gr.Blocks(title="🌍 ZenCtrl") as demo:
|
155 |
gr.HTML(header)
|
156 |
+
gr.Markdown("# ZenCtrl Demo")
|
157 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
with gr.Tabs():
|
159 |
for mode in MODE_DEFAULTS:
|
160 |
with gr.Tab(mode):
|
161 |
defaults = MODE_DEFAULTS[mode]
|
162 |
gr.Markdown(f"### {mode} Mode")
|
|
|
163 |
|
164 |
with gr.Row():
|
165 |
+
with gr.Column(scale=2):
|
166 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
generate_button = gr.Button("Generate")
|
168 |
+
with gr.Blocks():
|
169 |
model_dropdown = gr.Dropdown(
|
170 |
label="Model",
|
171 |
choices=defaults["models"],
|
|
|
177 |
)
|
178 |
|
179 |
with gr.Column(scale=2):
|
180 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
182 |
prompt_box = gr.Textbox(
|
183 |
label="Prompt", value=defaults["prompt"], lines=2
|
184 |
)
|
185 |
|
|
|
186 |
with gr.Accordion("Generation Parameters", open=False):
|
187 |
with gr.Row():
|
188 |
step_slider = gr.Slider(
|
189 |
+
minimum=2, maximum=28, value=10, step=2, label="Steps"
|
190 |
)
|
191 |
strength_slider = gr.Slider(
|
192 |
minimum=0.5,
|
|
|
212 |
)
|
213 |
|
214 |
def on_generate_click(
|
215 |
+
model_name, prompt, steps, strength, height, width, remove_bg, image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
):
|
217 |
return call_baseten_generate(
|
218 |
image,
|
|
|
238 |
input_image,
|
239 |
],
|
240 |
outputs=[output_image],
|
|
|
241 |
)
|
242 |
|
243 |
+
# ---------------- Templates --------------------
|
244 |
+
if examples_db.MODE_EXAMPLES.get(mode):
|
245 |
+
gr.Examples(
|
246 |
+
examples=examples_db.MODE_EXAMPLES.get(mode, []),
|
247 |
+
inputs=[input_image, prompt_box, output_image],
|
248 |
+
label="Presets (Input / Prompt / Output)",
|
249 |
+
examples_per_page=6,
|
250 |
+
)
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
+
demo.launch()
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODE_EXAMPLES = {
|
2 |
+
"Subject Generation": [
|
3 |
+
[
|
4 |
+
"imgs/sub_i1.png",
|
5 |
+
"Low angle photography, shoes, stepping in water in a futuristic cityscape with neon lights, in the back in large, the words 'ZenCtrl 2025' are written in a futuristic font",
|
6 |
+
"imgs/sub_o1.webp",
|
7 |
+
],
|
8 |
+
[
|
9 |
+
"imgs/sub_i2.png",
|
10 |
+
"blue car, on the road, outdoor, sunny day , beautiful cityscape",
|
11 |
+
"imgs/sub_o2.webp",
|
12 |
+
],
|
13 |
+
[
|
14 |
+
"imgs/sub_i3.png",
|
15 |
+
"in a modern living room , next to a flower vase",
|
16 |
+
"imgs/sub_o3.webp",
|
17 |
+
],
|
18 |
+
["imgs/sub_i4.png", "a watch with blue dial, on a table, in a living room, next to a window, sunny day", "imgs/sub_o4.webp"],
|
19 |
+
["imgs/sub_i5.png", "a ring , on a jewelry box, next to a luxurious shop window, side view, sunny day", "imgs/sub_o5.webp"],
|
20 |
+
],
|
21 |
+
"Background Generation": [
|
22 |
+
[
|
23 |
+
"imgs/bg_i1.png",
|
24 |
+
"placed on a dark marble table in a bathroom of luxury hotel modern light authentic atmosphere",
|
25 |
+
"imgs/bg_o1.png",
|
26 |
+
],
|
27 |
+
[
|
28 |
+
"imgs/bg_i2.png",
|
29 |
+
"sitting on the middle of the city road on a sunny day very bright day front view",
|
30 |
+
"imgs/bg_o2.png",
|
31 |
+
],
|
32 |
+
[
|
33 |
+
"imgs/bg_i3.png",
|
34 |
+
"A creative capture in an art gallery, with soft, focused lighting highlighting both the person’s features and the abstract surroundings, exuding sophistication.",
|
35 |
+
"imgs/bg_o3.jpg",
|
36 |
+
],
|
37 |
+
[
|
38 |
+
"imgs/bg_i4.png",
|
39 |
+
"In a rain-soaked urban nightscape, with headlights piercing through the mist and wet streets reflecting the city’s vibrant neon colors, creating an atmosphere of mystery and modern elegance.",
|
40 |
+
"imgs/bg_o4.jpg",
|
41 |
+
],
|
42 |
+
[
|
43 |
+
"imgs/bg_i5.png",
|
44 |
+
"An elegant room scene featuring a minimalist table and chairs, illuminated by ambient lighting that casts gentle shadows and enhances the refined, contemporary decor.",
|
45 |
+
"imgs/bg_o5.jpg",
|
46 |
+
],
|
47 |
+
],
|
48 |
+
# "Canny": [
|
49 |
+
# ["assets/canny1.jpg", "A neon cyberpunk city skyline", "assets/canny1_out.jpg"],
|
50 |
+
# ["assets/canny2.jpg", "A robot walking in the fog", "assets/canny2_out.jpg"],
|
51 |
+
# [
|
52 |
+
# "assets/canny3.jpg",
|
53 |
+
# "A futuristic vehicle parked under a bridge",
|
54 |
+
# "assets/canny3_out.jpg",
|
55 |
+
# ],
|
56 |
+
# [
|
57 |
+
# "assets/canny4.jpg",
|
58 |
+
# "Sci-fi lab interior with glowing machinery",
|
59 |
+
# "assets/canny4_out.jpg",
|
60 |
+
# ],
|
61 |
+
# [
|
62 |
+
# "assets/canny5.jpg",
|
63 |
+
# "A portrait of a woman outlined in neon",
|
64 |
+
# "assets/canny5_out.jpg",
|
65 |
+
# ],
|
66 |
+
# [
|
67 |
+
# "assets/canny6.jpg",
|
68 |
+
# "Post-apocalyptic abandoned street",
|
69 |
+
# "assets/canny6_out.jpg",
|
70 |
+
# ],
|
71 |
+
# ],
|
72 |
+
# "Depth": [
|
73 |
+
# [
|
74 |
+
# "assets/depth1.jpg",
|
75 |
+
# "A narrow alleyway with deep perspective",
|
76 |
+
# "assets/depth1_out.jpg",
|
77 |
+
# ],
|
78 |
+
# [
|
79 |
+
# "assets/depth2.jpg",
|
80 |
+
# "A mountain road vanishing into the distance",
|
81 |
+
# "assets/depth2_out.jpg",
|
82 |
+
# ],
|
83 |
+
# [
|
84 |
+
# "assets/depth3.jpg",
|
85 |
+
# "A hallway with strong depth of field",
|
86 |
+
# "assets/depth3_out.jpg",
|
87 |
+
# ],
|
88 |
+
# [
|
89 |
+
# "assets/depth4.jpg",
|
90 |
+
# "A misty forest path stretching far away",
|
91 |
+
# "assets/depth4_out.jpg",
|
92 |
+
# ],
|
93 |
+
# ["assets/depth5.jpg", "A bridge over a deep canyon", "assets/depth5_out.jpg"],
|
94 |
+
# [
|
95 |
+
# "assets/depth6.jpg",
|
96 |
+
# "An underground tunnel with receding arches",
|
97 |
+
# "assets/depth6_out.jpg",
|
98 |
+
# ],
|
99 |
+
# ],
|
100 |
+
# "Deblurring": [
|
101 |
+
# ["assets/deblur1.jpg", "", "assets/deblur1_out.jpg"],
|
102 |
+
# ["assets/deblur2.jpg", "", "assets/deblur2_out.jpg"],
|
103 |
+
# ["assets/deblur3.jpg", "", "assets/deblur3_out.jpg"],
|
104 |
+
# ["assets/deblur4.jpg", "", "assets/deblur4_out.jpg"],
|
105 |
+
# ["assets/deblur5.jpg", "", "assets/deblur5_out.jpg"],
|
106 |
+
# ["assets/deblur6.jpg", "", "assets/deblur6_out.jpg"],
|
107 |
+
# ],
|
108 |
+
}
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|
![]() |
Git LFS Details
|