Spaces:
Running
on
Zero
Running
on
Zero
Upload 7 files
Browse files- flux/__init__.py +0 -0
- flux/block.py +461 -0
- flux/condition.py +89 -0
- flux/generate.py +337 -0
- flux/lora_controller.py +82 -0
- flux/pipeline_tools.py +53 -0
- flux/transformer.py +286 -0
flux/__init__.py
ADDED
File without changes
|
flux/block.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Recycled from Ominicontrol and modified to accept an extra condition.
|
2 |
+
# While Zenctrl pursued a similar idea, it diverged structurally.
|
3 |
+
# We appreciate the clarity of Omini's implementation and decided to align with it.
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
7 |
+
from diffusers.models.attention_processor import Attention, F
|
8 |
+
from .lora_controller import enable_lora
|
9 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
10 |
+
|
11 |
+
def attn_forward(
|
12 |
+
attn: Attention,
|
13 |
+
hidden_states: torch.FloatTensor,
|
14 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
15 |
+
condition_latents: torch.FloatTensor = None,
|
16 |
+
extra_condition_latents: torch.FloatTensor = None,
|
17 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
18 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
19 |
+
cond_rotary_emb: Optional[torch.Tensor] = None,
|
20 |
+
extra_cond_rotary_emb: Optional[torch.Tensor] = None,
|
21 |
+
model_config: Optional[Dict[str, Any]] = {},
|
22 |
+
) -> torch.FloatTensor:
|
23 |
+
batch_size, _, _ = (
|
24 |
+
hidden_states.shape
|
25 |
+
if encoder_hidden_states is None
|
26 |
+
else encoder_hidden_states.shape
|
27 |
+
)
|
28 |
+
|
29 |
+
with enable_lora(
|
30 |
+
(attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False)
|
31 |
+
):
|
32 |
+
# `sample` projections.
|
33 |
+
query = attn.to_q(hidden_states)
|
34 |
+
key = attn.to_k(hidden_states)
|
35 |
+
value = attn.to_v(hidden_states)
|
36 |
+
|
37 |
+
inner_dim = key.shape[-1]
|
38 |
+
head_dim = inner_dim // attn.heads
|
39 |
+
|
40 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
41 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
42 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
43 |
+
|
44 |
+
if attn.norm_q is not None:
|
45 |
+
query = attn.norm_q(query)
|
46 |
+
if attn.norm_k is not None:
|
47 |
+
key = attn.norm_k(key)
|
48 |
+
|
49 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
50 |
+
if encoder_hidden_states is not None:
|
51 |
+
# `context` projections.
|
52 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
53 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
54 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
55 |
+
|
56 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
57 |
+
batch_size, -1, attn.heads, head_dim
|
58 |
+
).transpose(1, 2)
|
59 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
60 |
+
batch_size, -1, attn.heads, head_dim
|
61 |
+
).transpose(1, 2)
|
62 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
63 |
+
batch_size, -1, attn.heads, head_dim
|
64 |
+
).transpose(1, 2)
|
65 |
+
|
66 |
+
if attn.norm_added_q is not None:
|
67 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
68 |
+
encoder_hidden_states_query_proj
|
69 |
+
)
|
70 |
+
if attn.norm_added_k is not None:
|
71 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
72 |
+
encoder_hidden_states_key_proj
|
73 |
+
)
|
74 |
+
|
75 |
+
# attention
|
76 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
77 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
78 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
79 |
+
|
80 |
+
if image_rotary_emb is not None:
|
81 |
+
|
82 |
+
|
83 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
84 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
85 |
+
|
86 |
+
if condition_latents is not None:
|
87 |
+
cond_query = attn.to_q(condition_latents)
|
88 |
+
cond_key = attn.to_k(condition_latents)
|
89 |
+
cond_value = attn.to_v(condition_latents)
|
90 |
+
|
91 |
+
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
|
92 |
+
1, 2
|
93 |
+
)
|
94 |
+
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
95 |
+
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
|
96 |
+
1, 2
|
97 |
+
)
|
98 |
+
if attn.norm_q is not None:
|
99 |
+
cond_query = attn.norm_q(cond_query)
|
100 |
+
if attn.norm_k is not None:
|
101 |
+
cond_key = attn.norm_k(cond_key)
|
102 |
+
|
103 |
+
#extra condition
|
104 |
+
if extra_condition_latents is not None:
|
105 |
+
extra_cond_query = attn.to_q(extra_condition_latents)
|
106 |
+
extra_cond_key = attn.to_k(extra_condition_latents)
|
107 |
+
extra_cond_value = attn.to_v(extra_condition_latents)
|
108 |
+
|
109 |
+
extra_cond_query = extra_cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(
|
110 |
+
1, 2
|
111 |
+
)
|
112 |
+
extra_cond_key = extra_cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
113 |
+
extra_cond_value = extra_cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(
|
114 |
+
1, 2
|
115 |
+
)
|
116 |
+
if attn.norm_q is not None:
|
117 |
+
extra_cond_query = attn.norm_q(extra_cond_query)
|
118 |
+
if attn.norm_k is not None:
|
119 |
+
extra_cond_key = attn.norm_k(extra_cond_key)
|
120 |
+
|
121 |
+
|
122 |
+
if extra_cond_rotary_emb is not None:
|
123 |
+
extra_cond_query = apply_rotary_emb(extra_cond_query, extra_cond_rotary_emb)
|
124 |
+
extra_cond_key = apply_rotary_emb(extra_cond_key, extra_cond_rotary_emb)
|
125 |
+
|
126 |
+
if cond_rotary_emb is not None:
|
127 |
+
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
|
128 |
+
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
|
129 |
+
|
130 |
+
if condition_latents is not None:
|
131 |
+
if extra_condition_latents is not None:
|
132 |
+
|
133 |
+
query = torch.cat([query, cond_query, extra_cond_query], dim=2)
|
134 |
+
key = torch.cat([key, cond_key, extra_cond_key], dim=2)
|
135 |
+
value = torch.cat([value, cond_value, extra_cond_value], dim=2)
|
136 |
+
else:
|
137 |
+
query = torch.cat([query, cond_query], dim=2)
|
138 |
+
key = torch.cat([key, cond_key], dim=2)
|
139 |
+
value = torch.cat([value, cond_value], dim=2)
|
140 |
+
print("concat Omini latents: ", query.shape, key.shape, value.shape)
|
141 |
+
|
142 |
+
|
143 |
+
if not model_config.get("union_cond_attn", True):
|
144 |
+
|
145 |
+
attention_mask = torch.ones(
|
146 |
+
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
|
147 |
+
)
|
148 |
+
condition_n = cond_query.shape[2]
|
149 |
+
attention_mask[-condition_n:, :-condition_n] = False
|
150 |
+
attention_mask[:-condition_n, -condition_n:] = False
|
151 |
+
elif model_config.get("independent_condition", False):
|
152 |
+
attention_mask = torch.ones(
|
153 |
+
query.shape[2], key.shape[2], device=query.device, dtype=torch.bool
|
154 |
+
)
|
155 |
+
condition_n = cond_query.shape[2]
|
156 |
+
attention_mask[-condition_n:, :-condition_n] = False
|
157 |
+
|
158 |
+
if hasattr(attn, "c_factor"):
|
159 |
+
attention_mask = torch.zeros(
|
160 |
+
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
|
161 |
+
)
|
162 |
+
condition_n = cond_query.shape[2]
|
163 |
+
condition_e = extra_cond_query.shape[2]
|
164 |
+
bias = torch.log(attn.c_factor[0])
|
165 |
+
attention_mask[-condition_n-condition_e:-condition_e, :-condition_n-condition_e] = bias
|
166 |
+
attention_mask[:-condition_n-condition_e, -condition_n-condition_e:-condition_e] = bias
|
167 |
+
|
168 |
+
bias = torch.log(attn.c_factor[1])
|
169 |
+
attention_mask[-condition_e:, :-condition_n-condition_e] = bias
|
170 |
+
attention_mask[:-condition_n-condition_e, -condition_e:] = bias
|
171 |
+
|
172 |
+
hidden_states = F.scaled_dot_product_attention(
|
173 |
+
query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask
|
174 |
+
)
|
175 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
176 |
+
batch_size, -1, attn.heads * head_dim
|
177 |
+
)
|
178 |
+
hidden_states = hidden_states.to(query.dtype)
|
179 |
+
|
180 |
+
if encoder_hidden_states is not None:
|
181 |
+
if condition_latents is not None:
|
182 |
+
if extra_condition_latents is not None:
|
183 |
+
encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents = (
|
184 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
185 |
+
hidden_states[
|
186 |
+
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]*2
|
187 |
+
],
|
188 |
+
hidden_states[:, -condition_latents.shape[1]*2 :-condition_latents.shape[1]],
|
189 |
+
hidden_states[:, -condition_latents.shape[1] :], #extra condition latents
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
encoder_hidden_states, hidden_states, condition_latents = (
|
193 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
194 |
+
hidden_states[
|
195 |
+
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
|
196 |
+
],
|
197 |
+
hidden_states[:, -condition_latents.shape[1] :]
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
encoder_hidden_states, hidden_states = (
|
201 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
202 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
203 |
+
)
|
204 |
+
|
205 |
+
with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)):
|
206 |
+
# linear proj
|
207 |
+
hidden_states = attn.to_out[0](hidden_states)
|
208 |
+
# dropout
|
209 |
+
hidden_states = attn.to_out[1](hidden_states)
|
210 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
211 |
+
|
212 |
+
if condition_latents is not None:
|
213 |
+
condition_latents = attn.to_out[0](condition_latents)
|
214 |
+
condition_latents = attn.to_out[1](condition_latents)
|
215 |
+
|
216 |
+
if extra_condition_latents is not None:
|
217 |
+
extra_condition_latents = attn.to_out[0](extra_condition_latents)
|
218 |
+
extra_condition_latents = attn.to_out[1](extra_condition_latents)
|
219 |
+
|
220 |
+
|
221 |
+
return (
|
222 |
+
# (hidden_states, encoder_hidden_states, condition_latents, extra_condition_latents)
|
223 |
+
(hidden_states, encoder_hidden_states, condition_latents, extra_condition_latents)
|
224 |
+
if condition_latents is not None
|
225 |
+
else (hidden_states, encoder_hidden_states)
|
226 |
+
)
|
227 |
+
elif condition_latents is not None:
|
228 |
+
# if there are condition_latents, we need to separate the hidden_states and the condition_latents
|
229 |
+
if extra_condition_latents is not None:
|
230 |
+
hidden_states, condition_latents, extra_condition_latents = (
|
231 |
+
hidden_states[:, : -condition_latents.shape[1]*2],
|
232 |
+
hidden_states[:, -condition_latents.shape[1]*2 :-condition_latents.shape[1]],
|
233 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
234 |
+
)
|
235 |
+
else:
|
236 |
+
hidden_states, condition_latents = (
|
237 |
+
hidden_states[:, : -condition_latents.shape[1]],
|
238 |
+
hidden_states[:, -condition_latents.shape[1] :],
|
239 |
+
)
|
240 |
+
return hidden_states, condition_latents, extra_condition_latents
|
241 |
+
else:
|
242 |
+
return hidden_states
|
243 |
+
|
244 |
+
|
245 |
+
def block_forward(
|
246 |
+
self,
|
247 |
+
hidden_states: torch.FloatTensor,
|
248 |
+
encoder_hidden_states: torch.FloatTensor,
|
249 |
+
condition_latents: torch.FloatTensor,
|
250 |
+
extra_condition_latents: torch.FloatTensor,
|
251 |
+
temb: torch.FloatTensor,
|
252 |
+
cond_temb: torch.FloatTensor,
|
253 |
+
extra_cond_temb: torch.FloatTensor,
|
254 |
+
cond_rotary_emb=None,
|
255 |
+
extra_cond_rotary_emb=None,
|
256 |
+
image_rotary_emb=None,
|
257 |
+
model_config: Optional[Dict[str, Any]] = {},
|
258 |
+
):
|
259 |
+
use_cond = condition_latents is not None
|
260 |
+
|
261 |
+
use_extra_cond = extra_condition_latents is not None
|
262 |
+
with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)):
|
263 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
264 |
+
hidden_states, emb=temb
|
265 |
+
)
|
266 |
+
|
267 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
268 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
269 |
+
)
|
270 |
+
|
271 |
+
if use_cond:
|
272 |
+
(
|
273 |
+
norm_condition_latents,
|
274 |
+
cond_gate_msa,
|
275 |
+
cond_shift_mlp,
|
276 |
+
cond_scale_mlp,
|
277 |
+
cond_gate_mlp,
|
278 |
+
) = self.norm1(condition_latents, emb=cond_temb)
|
279 |
+
(
|
280 |
+
norm_extra_condition_latents,
|
281 |
+
extra_cond_gate_msa,
|
282 |
+
extra_cond_shift_mlp,
|
283 |
+
extra_cond_scale_mlp,
|
284 |
+
extra_cond_gate_mlp,
|
285 |
+
) = self.norm1(extra_condition_latents, emb=extra_cond_temb)
|
286 |
+
|
287 |
+
# Attention.
|
288 |
+
result = attn_forward(
|
289 |
+
self.attn,
|
290 |
+
model_config=model_config,
|
291 |
+
hidden_states=norm_hidden_states,
|
292 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
293 |
+
condition_latents=norm_condition_latents if use_cond else None,
|
294 |
+
extra_condition_latents=norm_extra_condition_latents if use_cond else None,
|
295 |
+
image_rotary_emb=image_rotary_emb,
|
296 |
+
cond_rotary_emb=cond_rotary_emb if use_cond else None,
|
297 |
+
extra_cond_rotary_emb=extra_cond_rotary_emb if use_extra_cond else None,
|
298 |
+
)
|
299 |
+
# print("in self block: ", result.shape)
|
300 |
+
attn_output, context_attn_output = result[:2]
|
301 |
+
cond_attn_output = result[2] if use_cond else None
|
302 |
+
extra_condition_output = result[3]
|
303 |
+
|
304 |
+
# Process attention outputs for the `hidden_states`.
|
305 |
+
# 1. hidden_states
|
306 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
307 |
+
hidden_states = hidden_states + attn_output
|
308 |
+
# 2. encoder_hidden_states
|
309 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
310 |
+
|
311 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
312 |
+
# 3. condition_latents
|
313 |
+
if use_cond:
|
314 |
+
cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
|
315 |
+
condition_latents = condition_latents + cond_attn_output
|
316 |
+
#need to make new condition_extra and add extra_condition_output
|
317 |
+
if use_extra_cond:
|
318 |
+
extra_condition_output = extra_cond_gate_msa.unsqueeze(1) * extra_condition_output
|
319 |
+
extra_condition_latents = extra_condition_latents + extra_condition_output
|
320 |
+
|
321 |
+
if model_config.get("add_cond_attn", False):
|
322 |
+
hidden_states += cond_attn_output
|
323 |
+
hidden_states += extra_condition_output
|
324 |
+
|
325 |
+
|
326 |
+
# LayerNorm + MLP.
|
327 |
+
# 1. hidden_states
|
328 |
+
norm_hidden_states = self.norm2(hidden_states)
|
329 |
+
norm_hidden_states = (
|
330 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
331 |
+
)
|
332 |
+
# 2. encoder_hidden_states
|
333 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
334 |
+
norm_encoder_hidden_states = (
|
335 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
336 |
+
)
|
337 |
+
# 3. condition_latents
|
338 |
+
if use_cond:
|
339 |
+
norm_condition_latents = self.norm2(condition_latents)
|
340 |
+
norm_condition_latents = (
|
341 |
+
norm_condition_latents * (1 + cond_scale_mlp[:, None])
|
342 |
+
+ cond_shift_mlp[:, None]
|
343 |
+
)
|
344 |
+
|
345 |
+
if use_extra_cond:
|
346 |
+
#added conditions
|
347 |
+
extra_norm_condition_latents = self.norm2(extra_condition_latents)
|
348 |
+
extra_norm_condition_latents = (
|
349 |
+
extra_norm_condition_latents * (1 + extra_cond_scale_mlp[:, None])
|
350 |
+
+ extra_cond_shift_mlp[:, None]
|
351 |
+
)
|
352 |
+
|
353 |
+
# Feed-forward.
|
354 |
+
with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)):
|
355 |
+
# 1. hidden_states
|
356 |
+
ff_output = self.ff(norm_hidden_states)
|
357 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
358 |
+
# 2. encoder_hidden_states
|
359 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
360 |
+
context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output
|
361 |
+
# 3. condition_latents
|
362 |
+
if use_cond:
|
363 |
+
cond_ff_output = self.ff(norm_condition_latents)
|
364 |
+
cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
|
365 |
+
|
366 |
+
if use_extra_cond:
|
367 |
+
extra_cond_ff_output = self.ff(extra_norm_condition_latents)
|
368 |
+
extra_cond_ff_output = extra_cond_gate_mlp.unsqueeze(1) * extra_cond_ff_output
|
369 |
+
|
370 |
+
# Process feed-forward outputs.
|
371 |
+
hidden_states = hidden_states + ff_output
|
372 |
+
encoder_hidden_states = encoder_hidden_states + context_ff_output
|
373 |
+
if use_cond:
|
374 |
+
condition_latents = condition_latents + cond_ff_output
|
375 |
+
if use_extra_cond:
|
376 |
+
extra_condition_latents = extra_condition_latents + extra_cond_ff_output
|
377 |
+
|
378 |
+
# Clip to avoid overflow.
|
379 |
+
if encoder_hidden_states.dtype == torch.float16:
|
380 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
381 |
+
|
382 |
+
return encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents if use_cond else None
|
383 |
+
|
384 |
+
|
385 |
+
def single_block_forward(
|
386 |
+
self,
|
387 |
+
hidden_states: torch.FloatTensor,
|
388 |
+
temb: torch.FloatTensor,
|
389 |
+
image_rotary_emb=None,
|
390 |
+
condition_latents: torch.FloatTensor = None,
|
391 |
+
extra_condition_latents: torch.FloatTensor = None,
|
392 |
+
cond_temb: torch.FloatTensor = None,
|
393 |
+
extra_cond_temb: torch.FloatTensor = None,
|
394 |
+
cond_rotary_emb=None,
|
395 |
+
extra_cond_rotary_emb=None,
|
396 |
+
model_config: Optional[Dict[str, Any]] = {},
|
397 |
+
):
|
398 |
+
|
399 |
+
using_cond = condition_latents is not None
|
400 |
+
using_extra_cond = extra_condition_latents is not None
|
401 |
+
residual = hidden_states
|
402 |
+
with enable_lora(
|
403 |
+
(
|
404 |
+
self.norm.linear,
|
405 |
+
self.proj_mlp,
|
406 |
+
),
|
407 |
+
model_config.get("latent_lora", False),
|
408 |
+
):
|
409 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
410 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
411 |
+
if using_cond:
|
412 |
+
residual_cond = condition_latents
|
413 |
+
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
|
414 |
+
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
|
415 |
+
|
416 |
+
if using_extra_cond:
|
417 |
+
extra_residual_cond = extra_condition_latents
|
418 |
+
extra_norm_condition_latents, extra_cond_gate = self.norm(extra_condition_latents, emb=extra_cond_temb)
|
419 |
+
extra_mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(extra_norm_condition_latents))
|
420 |
+
|
421 |
+
attn_output = attn_forward(
|
422 |
+
self.attn,
|
423 |
+
model_config=model_config,
|
424 |
+
hidden_states=norm_hidden_states,
|
425 |
+
image_rotary_emb=image_rotary_emb,
|
426 |
+
**(
|
427 |
+
{
|
428 |
+
"condition_latents": norm_condition_latents,
|
429 |
+
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
|
430 |
+
"extra_condition_latents": extra_norm_condition_latents if using_cond else None,
|
431 |
+
"extra_cond_rotary_emb": extra_cond_rotary_emb if using_cond else None,
|
432 |
+
}
|
433 |
+
if using_cond
|
434 |
+
else {}
|
435 |
+
),
|
436 |
+
)
|
437 |
+
|
438 |
+
if using_cond:
|
439 |
+
attn_output, cond_attn_output, extra_cond_attn_output = attn_output
|
440 |
+
|
441 |
+
|
442 |
+
with enable_lora((self.proj_out,), model_config.get("latent_lora", False)):
|
443 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
444 |
+
gate = gate.unsqueeze(1)
|
445 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
446 |
+
hidden_states = residual + hidden_states
|
447 |
+
if using_cond:
|
448 |
+
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
449 |
+
cond_gate = cond_gate.unsqueeze(1)
|
450 |
+
condition_latents = cond_gate * self.proj_out(condition_latents)
|
451 |
+
condition_latents = residual_cond + condition_latents
|
452 |
+
|
453 |
+
extra_condition_latents = torch.cat([extra_cond_attn_output, extra_mlp_cond_hidden_states], dim=2)
|
454 |
+
extra_cond_gate = extra_cond_gate.unsqueeze(1)
|
455 |
+
extra_condition_latents = extra_cond_gate * self.proj_out(extra_condition_latents)
|
456 |
+
extra_condition_latents = extra_residual_cond + extra_condition_latents
|
457 |
+
|
458 |
+
if hidden_states.dtype == torch.float16:
|
459 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
460 |
+
|
461 |
+
return hidden_states if not using_cond else (hidden_states, condition_latents, extra_condition_latents)
|
flux/condition.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Recycled from Ominicontrol and modified to accept an extra condition.
|
2 |
+
# While Zenctrl pursued a similar idea, it diverged structurally.
|
3 |
+
# We appreciate the clarity of Omini's implementation and decided to align with it.
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from typing import Optional, Union, List, Tuple
|
7 |
+
from diffusers.pipelines import FluxPipeline
|
8 |
+
from PIL import Image, ImageFilter
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
# from pipeline_tools import encode_images
|
13 |
+
from .pipeline_tools import encode_images
|
14 |
+
|
15 |
+
condition_dict = {
|
16 |
+
"subject": 1,
|
17 |
+
"sr": 2,
|
18 |
+
"cot": 3,
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
class Condition(object):
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
condition_type: str,
|
26 |
+
raw_img: Union[Image.Image, torch.Tensor] = None,
|
27 |
+
condition: Union[Image.Image, torch.Tensor] = None,
|
28 |
+
position_delta=None,
|
29 |
+
) -> None:
|
30 |
+
self.condition_type = condition_type
|
31 |
+
assert raw_img is not None or condition is not None
|
32 |
+
if raw_img is not None:
|
33 |
+
self.condition = self.get_condition(condition_type, raw_img)
|
34 |
+
else:
|
35 |
+
self.condition = condition
|
36 |
+
self.position_delta = position_delta
|
37 |
+
|
38 |
+
|
39 |
+
def get_condition(
|
40 |
+
self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
41 |
+
) -> Union[Image.Image, torch.Tensor]:
|
42 |
+
"""
|
43 |
+
Returns the condition image.
|
44 |
+
"""
|
45 |
+
if condition_type == "subject":
|
46 |
+
return raw_img
|
47 |
+
elif condition_type == "sr":
|
48 |
+
return raw_img
|
49 |
+
elif condition_type == "cot":
|
50 |
+
return raw_img.convert("RGB")
|
51 |
+
return self.condition
|
52 |
+
|
53 |
+
|
54 |
+
@property
|
55 |
+
def type_id(self) -> int:
|
56 |
+
"""
|
57 |
+
Returns the type id of the condition.
|
58 |
+
"""
|
59 |
+
return condition_dict[self.condition_type]
|
60 |
+
|
61 |
+
def encode(
|
62 |
+
self, pipe: FluxPipeline, empty: bool = False
|
63 |
+
) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
64 |
+
"""
|
65 |
+
Encodes the condition into tokens, ids and type_id.
|
66 |
+
"""
|
67 |
+
if self.condition_type in [
|
68 |
+
"subject",
|
69 |
+
"sr",
|
70 |
+
"cot"
|
71 |
+
]:
|
72 |
+
if empty:
|
73 |
+
# make the condition black
|
74 |
+
e_condition = Image.new("RGB", self.condition.size, (0, 0, 0))
|
75 |
+
e_condition = e_condition.convert("RGB")
|
76 |
+
tokens, ids = encode_images(pipe, e_condition)
|
77 |
+
else:
|
78 |
+
tokens, ids = encode_images(pipe, self.condition)
|
79 |
+
else:
|
80 |
+
raise NotImplementedError(
|
81 |
+
f"Condition type {self.condition_type} not implemented"
|
82 |
+
)
|
83 |
+
if self.position_delta is None and self.condition_type == "subject":
|
84 |
+
self.position_delta = [0, -self.condition.size[0] // 16]
|
85 |
+
if self.position_delta is not None:
|
86 |
+
ids[:, 1] += self.position_delta[0]
|
87 |
+
ids[:, 2] += self.position_delta[1]
|
88 |
+
type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
89 |
+
return tokens, ids, type_id
|
flux/generate.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Recycled from Ominicontrol and modified to accept an extra condition.
|
2 |
+
# While Zenctrl pursued a similar idea, it diverged structurally.
|
3 |
+
# We appreciate the clarity of Omini's implementation and decided to align with it.
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import yaml, os
|
7 |
+
from diffusers.pipelines import FluxPipeline
|
8 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
9 |
+
from .transformer import tranformer_forward
|
10 |
+
from .condition import Condition
|
11 |
+
|
12 |
+
|
13 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
14 |
+
FluxPipelineOutput,
|
15 |
+
calculate_shift,
|
16 |
+
retrieve_timesteps,
|
17 |
+
np,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
def get_config(config_path: str = None):
|
22 |
+
config_path = config_path or os.environ.get("XFL_CONFIG")
|
23 |
+
if not config_path:
|
24 |
+
return {}
|
25 |
+
with open(config_path, "r") as f:
|
26 |
+
config = yaml.safe_load(f)
|
27 |
+
return config
|
28 |
+
|
29 |
+
|
30 |
+
def prepare_params(
|
31 |
+
prompt: Union[str, List[str]] = None,
|
32 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
33 |
+
height: Optional[int] = 512,
|
34 |
+
width: Optional[int] = 512,
|
35 |
+
num_inference_steps: int = 28,
|
36 |
+
timesteps: List[int] = None,
|
37 |
+
guidance_scale: float = 3.5,
|
38 |
+
num_images_per_prompt: Optional[int] = 1,
|
39 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
40 |
+
latents: Optional[torch.FloatTensor] = None,
|
41 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
42 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
43 |
+
output_type: Optional[str] = "pil",
|
44 |
+
return_dict: bool = True,
|
45 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
46 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
47 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
48 |
+
max_sequence_length: int = 512,
|
49 |
+
**kwargs: dict,
|
50 |
+
):
|
51 |
+
return (
|
52 |
+
prompt,
|
53 |
+
prompt_2,
|
54 |
+
height,
|
55 |
+
width,
|
56 |
+
num_inference_steps,
|
57 |
+
timesteps,
|
58 |
+
guidance_scale,
|
59 |
+
num_images_per_prompt,
|
60 |
+
generator,
|
61 |
+
latents,
|
62 |
+
prompt_embeds,
|
63 |
+
pooled_prompt_embeds,
|
64 |
+
output_type,
|
65 |
+
return_dict,
|
66 |
+
joint_attention_kwargs,
|
67 |
+
callback_on_step_end,
|
68 |
+
callback_on_step_end_tensor_inputs,
|
69 |
+
max_sequence_length,
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def seed_everything(seed: int = 42):
|
74 |
+
torch.backends.cudnn.deterministic = True
|
75 |
+
torch.manual_seed(seed)
|
76 |
+
np.random.seed(seed)
|
77 |
+
|
78 |
+
|
79 |
+
@torch.no_grad()
|
80 |
+
def generate(
|
81 |
+
pipeline: FluxPipeline,
|
82 |
+
conditions: List[Condition] = None,
|
83 |
+
config_path: str = None,
|
84 |
+
model_config: Optional[Dict[str, Any]] = {},
|
85 |
+
condition_scale: float = [1, 1],
|
86 |
+
default_lora: bool = False,
|
87 |
+
image_guidance_scale: float = 1.0,
|
88 |
+
**params: dict,
|
89 |
+
):
|
90 |
+
model_config = model_config or get_config(config_path).get("model", {})
|
91 |
+
if condition_scale != [1,1]:
|
92 |
+
for name, module in pipeline.transformer.named_modules():
|
93 |
+
if not name.endswith(".attn"):
|
94 |
+
continue
|
95 |
+
module.c_factor = torch.tensor(condition_scale)
|
96 |
+
|
97 |
+
self = pipeline
|
98 |
+
(
|
99 |
+
prompt,
|
100 |
+
prompt_2,
|
101 |
+
height,
|
102 |
+
width,
|
103 |
+
num_inference_steps,
|
104 |
+
timesteps,
|
105 |
+
guidance_scale,
|
106 |
+
num_images_per_prompt,
|
107 |
+
generator,
|
108 |
+
latents,
|
109 |
+
prompt_embeds,
|
110 |
+
pooled_prompt_embeds,
|
111 |
+
output_type,
|
112 |
+
return_dict,
|
113 |
+
joint_attention_kwargs,
|
114 |
+
callback_on_step_end,
|
115 |
+
callback_on_step_end_tensor_inputs,
|
116 |
+
max_sequence_length,
|
117 |
+
) = prepare_params(**params)
|
118 |
+
|
119 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
120 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
121 |
+
|
122 |
+
# 1. Check inputs. Raise error if not correct
|
123 |
+
self.check_inputs(
|
124 |
+
prompt,
|
125 |
+
prompt_2,
|
126 |
+
height,
|
127 |
+
width,
|
128 |
+
prompt_embeds=prompt_embeds,
|
129 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
130 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
131 |
+
max_sequence_length=max_sequence_length,
|
132 |
+
)
|
133 |
+
|
134 |
+
self._guidance_scale = guidance_scale
|
135 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
136 |
+
self._interrupt = False
|
137 |
+
|
138 |
+
# 2. Define call parameters
|
139 |
+
if prompt is not None and isinstance(prompt, str):
|
140 |
+
batch_size = 1
|
141 |
+
elif prompt is not None and isinstance(prompt, list):
|
142 |
+
batch_size = len(prompt)
|
143 |
+
else:
|
144 |
+
batch_size = prompt_embeds.shape[0]
|
145 |
+
|
146 |
+
device = self._execution_device
|
147 |
+
|
148 |
+
lora_scale = (
|
149 |
+
self.joint_attention_kwargs.get("scale", None)
|
150 |
+
if self.joint_attention_kwargs is not None
|
151 |
+
else None
|
152 |
+
)
|
153 |
+
(
|
154 |
+
prompt_embeds,
|
155 |
+
pooled_prompt_embeds,
|
156 |
+
text_ids,
|
157 |
+
) = self.encode_prompt(
|
158 |
+
prompt=prompt,
|
159 |
+
prompt_2=prompt_2,
|
160 |
+
prompt_embeds=prompt_embeds,
|
161 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
162 |
+
device=device,
|
163 |
+
num_images_per_prompt=num_images_per_prompt,
|
164 |
+
max_sequence_length=max_sequence_length,
|
165 |
+
lora_scale=lora_scale,
|
166 |
+
)
|
167 |
+
|
168 |
+
# 4. Prepare latent variables
|
169 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
170 |
+
latents, latent_image_ids = self.prepare_latents(
|
171 |
+
batch_size * num_images_per_prompt,
|
172 |
+
num_channels_latents,
|
173 |
+
height,
|
174 |
+
width,
|
175 |
+
prompt_embeds.dtype,
|
176 |
+
device,
|
177 |
+
generator,
|
178 |
+
latents,
|
179 |
+
)
|
180 |
+
|
181 |
+
# 4.1. Prepare conditions
|
182 |
+
condition_latents, condition_ids, condition_type_ids = ([] for _ in range(3))
|
183 |
+
extra_condition_latents, extra_condition_ids, extra_condition_type_ids = ([] for _ in range(3))
|
184 |
+
use_condition = conditions is not None or []
|
185 |
+
if use_condition:
|
186 |
+
if not default_lora:
|
187 |
+
pipeline.set_adapters(conditions[1].condition_type)
|
188 |
+
# for condition in conditions:
|
189 |
+
tokens, ids, type_id = conditions[0].encode(self)
|
190 |
+
condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
191 |
+
condition_ids.append(ids) # [token_n, id_dim(3)]
|
192 |
+
condition_type_ids.append(type_id) # [token_n, 1]
|
193 |
+
condition_latents = torch.cat(condition_latents, dim=1)
|
194 |
+
condition_ids = torch.cat(condition_ids, dim=0)
|
195 |
+
condition_type_ids = torch.cat(condition_type_ids, dim=0)
|
196 |
+
|
197 |
+
tokens, ids, type_id = conditions[1].encode(self)
|
198 |
+
extra_condition_latents.append(tokens) # [batch_size, token_n, token_dim]
|
199 |
+
extra_condition_ids.append(ids) # [token_n, id_dim(3)]
|
200 |
+
extra_condition_type_ids.append(type_id) # [token_n, 1]
|
201 |
+
extra_condition_latents = torch.cat(extra_condition_latents, dim=1)
|
202 |
+
extra_condition_ids = torch.cat(extra_condition_ids, dim=0)
|
203 |
+
extra_condition_type_ids = torch.cat(extra_condition_type_ids, dim=0)
|
204 |
+
|
205 |
+
# 5. Prepare timesteps
|
206 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
207 |
+
image_seq_len = latents.shape[1]
|
208 |
+
mu = calculate_shift(
|
209 |
+
image_seq_len,
|
210 |
+
self.scheduler.config.base_image_seq_len,
|
211 |
+
self.scheduler.config.max_image_seq_len,
|
212 |
+
self.scheduler.config.base_shift,
|
213 |
+
self.scheduler.config.max_shift,
|
214 |
+
)
|
215 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
216 |
+
self.scheduler,
|
217 |
+
num_inference_steps,
|
218 |
+
device,
|
219 |
+
timesteps,
|
220 |
+
sigmas,
|
221 |
+
mu=mu,
|
222 |
+
)
|
223 |
+
num_warmup_steps = max(
|
224 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
225 |
+
)
|
226 |
+
self._num_timesteps = len(timesteps)
|
227 |
+
|
228 |
+
# 6. Denoising loop
|
229 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
230 |
+
for i, t in enumerate(timesteps):
|
231 |
+
if self.interrupt:
|
232 |
+
continue
|
233 |
+
|
234 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
235 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
236 |
+
|
237 |
+
# handle guidance
|
238 |
+
if self.transformer.config.guidance_embeds:
|
239 |
+
guidance = torch.tensor([guidance_scale], device=device)
|
240 |
+
guidance = guidance.expand(latents.shape[0])
|
241 |
+
else:
|
242 |
+
guidance = None
|
243 |
+
noise_pred = tranformer_forward(
|
244 |
+
self.transformer,
|
245 |
+
model_config=model_config,
|
246 |
+
# Inputs of the condition (new feature)
|
247 |
+
condition_latents=condition_latents if use_condition else None,
|
248 |
+
condition_ids=condition_ids if use_condition else None,
|
249 |
+
condition_type_ids=condition_type_ids if use_condition else None,
|
250 |
+
extra_condition_latents=extra_condition_latents if use_condition else None,
|
251 |
+
extra_condition_ids=extra_condition_ids if use_condition else None,
|
252 |
+
extra_condition_type_ids=extra_condition_type_ids if use_condition else None,
|
253 |
+
# Inputs to the original transformer
|
254 |
+
hidden_states=latents,
|
255 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
256 |
+
timestep=timestep / 1000,
|
257 |
+
guidance=guidance,
|
258 |
+
pooled_projections=pooled_prompt_embeds,
|
259 |
+
encoder_hidden_states=prompt_embeds,
|
260 |
+
txt_ids=text_ids,
|
261 |
+
img_ids=latent_image_ids,
|
262 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
263 |
+
return_dict=False,
|
264 |
+
)[0]
|
265 |
+
|
266 |
+
if image_guidance_scale != 1.0:
|
267 |
+
uncondition_latents = conditions.encode(self, empty=True)[0]
|
268 |
+
unc_pred = tranformer_forward(
|
269 |
+
self.transformer,
|
270 |
+
model_config=model_config,
|
271 |
+
# Inputs of the condition (new feature)
|
272 |
+
condition_latents=uncondition_latents if use_condition else None,
|
273 |
+
condition_ids=condition_ids if use_condition else None,
|
274 |
+
condition_type_ids=condition_type_ids if use_condition else None,
|
275 |
+
# Inputs to the original transformer
|
276 |
+
hidden_states=latents,
|
277 |
+
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
278 |
+
timestep=timestep / 1000,
|
279 |
+
guidance=torch.ones_like(guidance),
|
280 |
+
pooled_projections=pooled_prompt_embeds,
|
281 |
+
encoder_hidden_states=prompt_embeds,
|
282 |
+
txt_ids=text_ids,
|
283 |
+
img_ids=latent_image_ids,
|
284 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
285 |
+
return_dict=False,
|
286 |
+
)[0]
|
287 |
+
|
288 |
+
noise_pred = unc_pred + image_guidance_scale * (noise_pred - unc_pred)
|
289 |
+
|
290 |
+
# compute the previous noisy sample x_t -> x_t-1
|
291 |
+
latents_dtype = latents.dtype
|
292 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
293 |
+
|
294 |
+
if latents.dtype != latents_dtype:
|
295 |
+
if torch.backends.mps.is_available():
|
296 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
297 |
+
latents = latents.to(latents_dtype)
|
298 |
+
|
299 |
+
if callback_on_step_end is not None:
|
300 |
+
callback_kwargs = {}
|
301 |
+
for k in callback_on_step_end_tensor_inputs:
|
302 |
+
callback_kwargs[k] = locals()[k]
|
303 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
304 |
+
|
305 |
+
latents = callback_outputs.pop("latents", latents)
|
306 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
307 |
+
|
308 |
+
# call the callback, if provided
|
309 |
+
if i == len(timesteps) - 1 or (
|
310 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
311 |
+
):
|
312 |
+
progress_bar.update()
|
313 |
+
|
314 |
+
if output_type == "latent":
|
315 |
+
image = latents
|
316 |
+
|
317 |
+
else:
|
318 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
319 |
+
latents = (
|
320 |
+
latents / self.vae.config.scaling_factor
|
321 |
+
) + self.vae.config.shift_factor
|
322 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
323 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
324 |
+
|
325 |
+
# Offload all models
|
326 |
+
self.maybe_free_model_hooks()
|
327 |
+
|
328 |
+
if condition_scale != [1,1]:
|
329 |
+
for name, module in pipeline.transformer.named_modules():
|
330 |
+
if not name.endswith(".attn"):
|
331 |
+
continue
|
332 |
+
del module.c_factor
|
333 |
+
|
334 |
+
if not return_dict:
|
335 |
+
return (image,)
|
336 |
+
|
337 |
+
return FluxPipelineOutput(images=image)
|
flux/lora_controller.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#As is from OminiControl
|
2 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
3 |
+
from typing import List, Any, Optional, Type
|
4 |
+
from .condition import condition_dict
|
5 |
+
|
6 |
+
|
7 |
+
class enable_lora:
|
8 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], activated: bool) -> None:
|
9 |
+
self.activated: bool = activated
|
10 |
+
if activated:
|
11 |
+
return
|
12 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
13 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
14 |
+
]
|
15 |
+
self.scales = [
|
16 |
+
{
|
17 |
+
active_adapter: lora_module.scaling[active_adapter]
|
18 |
+
for active_adapter in lora_module.active_adapters
|
19 |
+
}
|
20 |
+
for lora_module in self.lora_modules
|
21 |
+
]
|
22 |
+
|
23 |
+
def __enter__(self) -> None:
|
24 |
+
if self.activated:
|
25 |
+
return
|
26 |
+
|
27 |
+
for lora_module in self.lora_modules:
|
28 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
29 |
+
continue
|
30 |
+
for active_adapter in lora_module.active_adapters:
|
31 |
+
if (
|
32 |
+
active_adapter in condition_dict.keys()
|
33 |
+
or active_adapter == "default"
|
34 |
+
):
|
35 |
+
lora_module.scaling[active_adapter] = 0.0
|
36 |
+
|
37 |
+
def __exit__(
|
38 |
+
self,
|
39 |
+
exc_type: Optional[Type[BaseException]],
|
40 |
+
exc_val: Optional[BaseException],
|
41 |
+
exc_tb: Optional[Any],
|
42 |
+
) -> None:
|
43 |
+
if self.activated:
|
44 |
+
return
|
45 |
+
for i, lora_module in enumerate(self.lora_modules):
|
46 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
47 |
+
continue
|
48 |
+
for active_adapter in lora_module.active_adapters:
|
49 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
50 |
+
|
51 |
+
|
52 |
+
class set_lora_scale:
|
53 |
+
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None:
|
54 |
+
self.lora_modules: List[BaseTunerLayer] = [
|
55 |
+
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
56 |
+
]
|
57 |
+
self.scales = [
|
58 |
+
{
|
59 |
+
active_adapter: lora_module.scaling[active_adapter]
|
60 |
+
for active_adapter in lora_module.active_adapters
|
61 |
+
}
|
62 |
+
for lora_module in self.lora_modules
|
63 |
+
]
|
64 |
+
self.scale = scale
|
65 |
+
|
66 |
+
def __enter__(self) -> None:
|
67 |
+
for lora_module in self.lora_modules:
|
68 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
69 |
+
continue
|
70 |
+
lora_module.scale_layer(self.scale)
|
71 |
+
|
72 |
+
def __exit__(
|
73 |
+
self,
|
74 |
+
exc_type: Optional[Type[BaseException]],
|
75 |
+
exc_val: Optional[BaseException],
|
76 |
+
exc_tb: Optional[Any],
|
77 |
+
) -> None:
|
78 |
+
for i, lora_module in enumerate(self.lora_modules):
|
79 |
+
if not isinstance(lora_module, BaseTunerLayer):
|
80 |
+
continue
|
81 |
+
for active_adapter in lora_module.active_adapters:
|
82 |
+
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
flux/pipeline_tools.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#As is from OminiControl
|
2 |
+
from diffusers.pipelines import FluxPipeline
|
3 |
+
from diffusers.utils import logging
|
4 |
+
from diffusers.pipelines.flux.pipeline_flux import logger
|
5 |
+
from torch import Tensor
|
6 |
+
|
7 |
+
|
8 |
+
def encode_images(pipeline: FluxPipeline, images: Tensor):
|
9 |
+
images = pipeline.image_processor.preprocess(images)
|
10 |
+
images = images.to(pipeline.device).to(pipeline.dtype)
|
11 |
+
images = pipeline.vae.encode(images).latent_dist.sample()
|
12 |
+
images = (
|
13 |
+
images - pipeline.vae.config.shift_factor
|
14 |
+
) * pipeline.vae.config.scaling_factor
|
15 |
+
images_tokens = pipeline._pack_latents(images, *images.shape)
|
16 |
+
images_ids = pipeline._prepare_latent_image_ids(
|
17 |
+
images.shape[0],
|
18 |
+
images.shape[2],
|
19 |
+
images.shape[3],
|
20 |
+
pipeline.device,
|
21 |
+
pipeline.dtype,
|
22 |
+
)
|
23 |
+
if images_tokens.shape[1] != images_ids.shape[0]:
|
24 |
+
images_ids = pipeline._prepare_latent_image_ids(
|
25 |
+
images.shape[0],
|
26 |
+
images.shape[2] // 2,
|
27 |
+
images.shape[3] // 2,
|
28 |
+
pipeline.device,
|
29 |
+
pipeline.dtype,
|
30 |
+
)
|
31 |
+
return images_tokens, images_ids
|
32 |
+
|
33 |
+
|
34 |
+
def prepare_text_input(pipeline: FluxPipeline, prompts, max_sequence_length=512):
|
35 |
+
# Turn off warnings (CLIP overflow)
|
36 |
+
logger.setLevel(logging.ERROR)
|
37 |
+
(
|
38 |
+
prompt_embeds,
|
39 |
+
pooled_prompt_embeds,
|
40 |
+
text_ids,
|
41 |
+
) = pipeline.encode_prompt(
|
42 |
+
prompt=prompts,
|
43 |
+
prompt_2=None,
|
44 |
+
prompt_embeds=None,
|
45 |
+
pooled_prompt_embeds=None,
|
46 |
+
device=pipeline.device,
|
47 |
+
num_images_per_prompt=1,
|
48 |
+
max_sequence_length=max_sequence_length,
|
49 |
+
lora_scale=None,
|
50 |
+
)
|
51 |
+
# Turn on warnings
|
52 |
+
logger.setLevel(logging.WARNING)
|
53 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids
|
flux/transformer.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Recycled from Ominicontrol and modified to accept an extra condition.
|
2 |
+
# While Zenctrl pursued a similar idea, it diverged structurally.
|
3 |
+
# We appreciate the clarity of Omini's implementation and decided to align with it.
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.pipelines import FluxPipeline
|
7 |
+
from typing import List, Union, Optional, Dict, Any, Callable
|
8 |
+
from .block import block_forward, single_block_forward
|
9 |
+
from .lora_controller import enable_lora
|
10 |
+
from accelerate.utils import is_torch_version
|
11 |
+
from diffusers.models.transformers.transformer_flux import (
|
12 |
+
FluxTransformer2DModel,
|
13 |
+
Transformer2DModelOutput,
|
14 |
+
USE_PEFT_BACKEND,
|
15 |
+
scale_lora_layers,
|
16 |
+
unscale_lora_layers,
|
17 |
+
logger,
|
18 |
+
)
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
|
22 |
+
def prepare_params(
|
23 |
+
hidden_states: torch.Tensor,
|
24 |
+
encoder_hidden_states: torch.Tensor = None,
|
25 |
+
pooled_projections: torch.Tensor = None,
|
26 |
+
timestep: torch.LongTensor = None,
|
27 |
+
img_ids: torch.Tensor = None,
|
28 |
+
txt_ids: torch.Tensor = None,
|
29 |
+
guidance: torch.Tensor = None,
|
30 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
31 |
+
controlnet_block_samples=None,
|
32 |
+
controlnet_single_block_samples=None,
|
33 |
+
return_dict: bool = True,
|
34 |
+
**kwargs: dict,
|
35 |
+
):
|
36 |
+
return (
|
37 |
+
hidden_states,
|
38 |
+
encoder_hidden_states,
|
39 |
+
pooled_projections,
|
40 |
+
timestep,
|
41 |
+
img_ids,
|
42 |
+
txt_ids,
|
43 |
+
guidance,
|
44 |
+
joint_attention_kwargs,
|
45 |
+
controlnet_block_samples,
|
46 |
+
controlnet_single_block_samples,
|
47 |
+
return_dict,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def tranformer_forward(
|
52 |
+
transformer: FluxTransformer2DModel,
|
53 |
+
condition_latents: torch.Tensor,
|
54 |
+
extra_condition_latents: torch.Tensor,
|
55 |
+
condition_ids: torch.Tensor,
|
56 |
+
condition_type_ids: torch.Tensor,
|
57 |
+
extra_condition_ids: torch.Tensor,
|
58 |
+
extra_condition_type_ids: torch.Tensor,
|
59 |
+
model_config: Optional[Dict[str, Any]] = {},
|
60 |
+
c_t=0,
|
61 |
+
**params: dict,
|
62 |
+
):
|
63 |
+
self = transformer
|
64 |
+
use_condition = condition_latents is not None
|
65 |
+
use_extra_condition = extra_condition_latents is not None
|
66 |
+
|
67 |
+
(
|
68 |
+
hidden_states,
|
69 |
+
encoder_hidden_states,
|
70 |
+
pooled_projections,
|
71 |
+
timestep,
|
72 |
+
img_ids,
|
73 |
+
txt_ids,
|
74 |
+
guidance,
|
75 |
+
joint_attention_kwargs,
|
76 |
+
controlnet_block_samples,
|
77 |
+
controlnet_single_block_samples,
|
78 |
+
return_dict,
|
79 |
+
) = prepare_params(**params)
|
80 |
+
|
81 |
+
if joint_attention_kwargs is not None:
|
82 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
83 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
84 |
+
else:
|
85 |
+
lora_scale = 1.0
|
86 |
+
|
87 |
+
if USE_PEFT_BACKEND:
|
88 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
89 |
+
scale_lora_layers(self, lora_scale)
|
90 |
+
else:
|
91 |
+
if (
|
92 |
+
joint_attention_kwargs is not None
|
93 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
94 |
+
):
|
95 |
+
logger.warning(
|
96 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
97 |
+
)
|
98 |
+
|
99 |
+
with enable_lora((self.x_embedder,), model_config.get("latent_lora", False)):
|
100 |
+
hidden_states = self.x_embedder(hidden_states)
|
101 |
+
condition_latents = self.x_embedder(condition_latents) if use_condition else None
|
102 |
+
extra_condition_latents = self.x_embedder(extra_condition_latents) if use_extra_condition else None
|
103 |
+
|
104 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
105 |
+
|
106 |
+
if guidance is not None:
|
107 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
108 |
+
else:
|
109 |
+
guidance = None
|
110 |
+
|
111 |
+
temb = (
|
112 |
+
self.time_text_embed(timestep, pooled_projections)
|
113 |
+
if guidance is None
|
114 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
115 |
+
)
|
116 |
+
|
117 |
+
cond_temb = (
|
118 |
+
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
119 |
+
if guidance is None
|
120 |
+
else self.time_text_embed(
|
121 |
+
torch.ones_like(timestep) * c_t * 1000, torch.ones_like(guidance) * 1000, pooled_projections
|
122 |
+
)
|
123 |
+
)
|
124 |
+
extra_cond_temb = (
|
125 |
+
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
126 |
+
if guidance is None
|
127 |
+
else self.time_text_embed(
|
128 |
+
torch.ones_like(timestep) * c_t * 1000, torch.ones_like(guidance) * 1000, pooled_projections
|
129 |
+
)
|
130 |
+
)
|
131 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
132 |
+
|
133 |
+
if txt_ids.ndim == 3:
|
134 |
+
logger.warning(
|
135 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
136 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
137 |
+
)
|
138 |
+
txt_ids = txt_ids[0]
|
139 |
+
if img_ids.ndim == 3:
|
140 |
+
logger.warning(
|
141 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
142 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
143 |
+
)
|
144 |
+
img_ids = img_ids[0]
|
145 |
+
|
146 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
147 |
+
image_rotary_emb = self.pos_embed(ids)
|
148 |
+
if use_condition:
|
149 |
+
# condition_ids[:, :1] = condition_type_ids
|
150 |
+
cond_rotary_emb = self.pos_embed(condition_ids)
|
151 |
+
|
152 |
+
if use_extra_condition:
|
153 |
+
extra_cond_rotary_emb = self.pos_embed(extra_condition_ids)
|
154 |
+
|
155 |
+
|
156 |
+
# hidden_states = torch.cat([hidden_states, condition_latents], dim=1)
|
157 |
+
|
158 |
+
#print("here!")
|
159 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
160 |
+
if self.training and self.gradient_checkpointing:
|
161 |
+
ckpt_kwargs: Dict[str, Any] = (
|
162 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
163 |
+
)
|
164 |
+
encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents = (
|
165 |
+
torch.utils.checkpoint.checkpoint(
|
166 |
+
block_forward,
|
167 |
+
self=block,
|
168 |
+
model_config=model_config,
|
169 |
+
hidden_states=hidden_states,
|
170 |
+
encoder_hidden_states=encoder_hidden_states,
|
171 |
+
condition_latents=condition_latents if use_condition else None,
|
172 |
+
extra_condition_latents=extra_condition_latents if use_extra_condition else None,
|
173 |
+
temb=temb,
|
174 |
+
cond_temb=cond_temb if use_condition else None,
|
175 |
+
cond_rotary_emb=cond_rotary_emb if use_condition else None,
|
176 |
+
extra_cond_temb=extra_cond_temb if use_extra_condition else None,
|
177 |
+
extra_cond_rotary_emb=extra_cond_rotary_emb if use_extra_condition else None,
|
178 |
+
image_rotary_emb=image_rotary_emb,
|
179 |
+
**ckpt_kwargs,
|
180 |
+
)
|
181 |
+
)
|
182 |
+
|
183 |
+
else:
|
184 |
+
encoder_hidden_states, hidden_states, condition_latents, extra_condition_latents = block_forward(
|
185 |
+
block,
|
186 |
+
model_config=model_config,
|
187 |
+
hidden_states=hidden_states,
|
188 |
+
encoder_hidden_states=encoder_hidden_states,
|
189 |
+
condition_latents=condition_latents if use_condition else None,
|
190 |
+
extra_condition_latents=extra_condition_latents if use_extra_condition else None,
|
191 |
+
temb=temb,
|
192 |
+
cond_temb=cond_temb if use_condition else None,
|
193 |
+
cond_rotary_emb=cond_rotary_emb if use_condition else None,
|
194 |
+
extra_cond_temb=cond_temb if use_extra_condition else None,
|
195 |
+
extra_cond_rotary_emb=extra_cond_rotary_emb if use_extra_condition else None,
|
196 |
+
image_rotary_emb=image_rotary_emb,
|
197 |
+
)
|
198 |
+
|
199 |
+
# controlnet residual
|
200 |
+
if controlnet_block_samples is not None:
|
201 |
+
interval_control = len(self.transformer_blocks) / len(
|
202 |
+
controlnet_block_samples
|
203 |
+
)
|
204 |
+
interval_control = int(np.ceil(interval_control))
|
205 |
+
hidden_states = (
|
206 |
+
hidden_states
|
207 |
+
+ controlnet_block_samples[index_block // interval_control]
|
208 |
+
)
|
209 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
210 |
+
|
211 |
+
|
212 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
213 |
+
if self.training and self.gradient_checkpointing:
|
214 |
+
ckpt_kwargs: Dict[str, Any] = (
|
215 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
216 |
+
)
|
217 |
+
result = torch.utils.checkpoint.checkpoint(
|
218 |
+
single_block_forward,
|
219 |
+
self=block,
|
220 |
+
model_config=model_config,
|
221 |
+
hidden_states=hidden_states,
|
222 |
+
temb=temb,
|
223 |
+
image_rotary_emb=image_rotary_emb,
|
224 |
+
**(
|
225 |
+
{
|
226 |
+
"condition_latents": condition_latents,
|
227 |
+
"extra_condition_latents": extra_condition_latents,
|
228 |
+
"cond_temb": cond_temb,
|
229 |
+
"cond_rotary_emb": cond_rotary_emb,
|
230 |
+
"extra_cond_temb": extra_cond_temb,
|
231 |
+
"extra_cond_rotary_emb": extra_cond_rotary_emb,
|
232 |
+
}
|
233 |
+
if use_condition
|
234 |
+
else {}
|
235 |
+
),
|
236 |
+
**ckpt_kwargs,
|
237 |
+
)
|
238 |
+
|
239 |
+
else:
|
240 |
+
result = single_block_forward(
|
241 |
+
block,
|
242 |
+
model_config=model_config,
|
243 |
+
hidden_states=hidden_states,
|
244 |
+
temb=temb,
|
245 |
+
image_rotary_emb=image_rotary_emb,
|
246 |
+
**(
|
247 |
+
{
|
248 |
+
"condition_latents": condition_latents,
|
249 |
+
"extra_condition_latents": extra_condition_latents,
|
250 |
+
"cond_temb": cond_temb,
|
251 |
+
"cond_rotary_emb": cond_rotary_emb,
|
252 |
+
"extra_cond_temb": extra_cond_temb,
|
253 |
+
"extra_cond_rotary_emb": extra_cond_rotary_emb,
|
254 |
+
}
|
255 |
+
if use_condition
|
256 |
+
else {}
|
257 |
+
),
|
258 |
+
)
|
259 |
+
if use_condition:
|
260 |
+
hidden_states, condition_latents, extra_condition_latents = result
|
261 |
+
else:
|
262 |
+
hidden_states = result
|
263 |
+
|
264 |
+
# controlnet residual
|
265 |
+
if controlnet_single_block_samples is not None:
|
266 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
267 |
+
controlnet_single_block_samples
|
268 |
+
)
|
269 |
+
interval_control = int(np.ceil(interval_control))
|
270 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
271 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
272 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
273 |
+
)
|
274 |
+
|
275 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
276 |
+
|
277 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
278 |
+
output = self.proj_out(hidden_states)
|
279 |
+
|
280 |
+
if USE_PEFT_BACKEND:
|
281 |
+
# remove `lora_scale` from each PEFT layer
|
282 |
+
unscale_lora_layers(self, lora_scale)
|
283 |
+
|
284 |
+
if not return_dict:
|
285 |
+
return (output,)
|
286 |
+
return Transformer2DModelOutput(sample=output)
|