explorewithai commited on
Commit
19c180b
·
verified ·
1 Parent(s): 7d65e2d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -25
app.py CHANGED
@@ -1,51 +1,47 @@
1
  import gradio as gr
2
  import os
3
- from transformers import pipeline, AutoTokenizer
4
 
5
- # Load the tokenizer and model using the pipeline
6
- pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True)
7
- tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B")
8
 
9
- # Get the system prompt from environment variables
10
  meo_system = os.environ.get("MEO")
11
 
12
  def respond(
13
  message,
14
- history,
15
  max_tokens,
16
  temperature,
17
  top_p,
18
  ):
19
- # Format the messages for the pipeline
20
  messages = [{"role": "system", "content": meo_system}]
21
- for user_msg, bot_msg in history:
22
- messages.append({"role": "user", "content": user_msg})
23
- messages.append({"role": "assistant", "content": bot_msg})
 
 
 
 
24
  messages.append({"role": "user", "content": message})
25
 
26
- # Generate the prompt using the tokenizer's chat template
27
- prompt = tokenizer.apply_chat_template(messages, tokenize=False)
28
 
29
- # Generate the response using the pipeline
30
- outputs = pipe(
31
- prompt,
32
- max_new_tokens=max_tokens,
33
- do_sample=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- return_full_text=False # We only want the generated part
37
- )
38
 
39
- # Extract the generated text
40
- response = outputs[0]['generated_text']
41
 
42
- return response
43
 
44
- # Create the Gradio interface
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
  gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
50
  gr.Slider(
51
  minimum=0.1,
@@ -57,5 +53,6 @@ demo = gr.ChatInterface(
57
  ],
58
  )
59
 
 
60
  if __name__ == "__main__":
61
- demo.launch()
 
1
  import gradio as gr
2
  import os
3
+ from huggingface_hub import InferenceClient
4
 
5
+ client = InferenceClient("explorewithai/Loxa-1.6B")
 
 
6
 
 
7
  meo_system = os.environ.get("MEO")
8
 
9
  def respond(
10
  message,
11
+ history: list[tuple[str, str]],
12
  max_tokens,
13
  temperature,
14
  top_p,
15
  ):
 
16
  messages = [{"role": "system", "content": meo_system}]
17
+
18
+ for val in history:
19
+ if val[0]:
20
+ messages.append({"role": "user", "content": val[0]})
21
+ if val[1]:
22
+ messages.append({"role": "assistant", "content": val[1]})
23
+
24
  messages.append({"role": "user", "content": message})
25
 
26
+ response = ""
 
27
 
28
+ for message in client.chat_completion(
29
+ messages,
30
+ max_tokens=max_tokens,
31
+ stream=True,
 
32
  temperature=temperature,
33
  top_p=top_p,
34
+ ):
35
+ token = message.choices[0].delta.content
36
 
37
+ response += token
38
+ yield response
39
 
 
40
 
 
41
  demo = gr.ChatInterface(
42
  respond,
43
  additional_inputs=[
44
+ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
45
  gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
46
  gr.Slider(
47
  minimum=0.1,
 
53
  ],
54
  )
55
 
56
+
57
  if __name__ == "__main__":
58
+ demo.launch()