Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,51 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
from
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
|
|
|
| 7 |
meo_system = os.environ.get("MEO")
|
| 8 |
|
| 9 |
def respond(
|
| 10 |
message,
|
| 11 |
-
history
|
| 12 |
max_tokens,
|
| 13 |
temperature,
|
| 14 |
top_p,
|
| 15 |
):
|
|
|
|
| 16 |
messages = [{"role": "system", "content": meo_system}]
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
messages.append({"role": "user", "content": val[0]})
|
| 21 |
-
if val[1]:
|
| 22 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 23 |
-
|
| 24 |
messages.append({"role": "user", "content": message})
|
| 25 |
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
temperature=temperature,
|
| 33 |
top_p=top_p,
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
|
|
|
|
| 40 |
|
|
|
|
| 41 |
demo = gr.ChatInterface(
|
| 42 |
respond,
|
| 43 |
additional_inputs=[
|
| 44 |
-
gr.Slider(minimum=1, maximum=2048, value=
|
| 45 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
| 46 |
gr.Slider(
|
| 47 |
minimum=0.1,
|
|
@@ -53,6 +57,5 @@ demo = gr.ChatInterface(
|
|
| 53 |
],
|
| 54 |
)
|
| 55 |
|
| 56 |
-
|
| 57 |
if __name__ == "__main__":
|
| 58 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
from transformers import pipeline, AutoTokenizer
|
| 4 |
|
| 5 |
+
# Load the tokenizer and model using the pipeline
|
| 6 |
+
pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True)
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B")
|
| 8 |
|
| 9 |
+
# Get the system prompt from environment variables
|
| 10 |
meo_system = os.environ.get("MEO")
|
| 11 |
|
| 12 |
def respond(
|
| 13 |
message,
|
| 14 |
+
history,
|
| 15 |
max_tokens,
|
| 16 |
temperature,
|
| 17 |
top_p,
|
| 18 |
):
|
| 19 |
+
# Format the messages for the pipeline
|
| 20 |
messages = [{"role": "system", "content": meo_system}]
|
| 21 |
+
for user_msg, bot_msg in history:
|
| 22 |
+
messages.append({"role": "user", "content": user_msg})
|
| 23 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
messages.append({"role": "user", "content": message})
|
| 25 |
|
| 26 |
+
# Generate the prompt using the tokenizer's chat template
|
| 27 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 28 |
|
| 29 |
+
# Generate the response using the pipeline
|
| 30 |
+
outputs = pipe(
|
| 31 |
+
prompt,
|
| 32 |
+
max_new_tokens=max_tokens,
|
| 33 |
+
do_sample=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
+
return_full_text=False # We only want the generated part
|
| 37 |
+
)
|
| 38 |
|
| 39 |
+
# Extract the generated text
|
| 40 |
+
response = outputs[0]['generated_text']
|
| 41 |
|
| 42 |
+
return response
|
| 43 |
|
| 44 |
+
# Create the Gradio interface
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
respond,
|
| 47 |
additional_inputs=[
|
| 48 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 49 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
| 50 |
gr.Slider(
|
| 51 |
minimum=0.1,
|
|
|
|
| 57 |
],
|
| 58 |
)
|
| 59 |
|
|
|
|
| 60 |
if __name__ == "__main__":
|
| 61 |
+
demo.launch()
|