import gradio as gr import os from transformers import pipeline, AutoTokenizer # Load the tokenizer and model using the pipeline pipe = pipeline("text-generation", model="explorewithai/Loxa-4B", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("explorewithai/Loxa-4B") # Get the system prompt from environment variables meo_system = os.environ.get("MEO") def respond( message, history, max_tokens, temperature, top_p, ): # Format the messages for the pipeline messages = [{"role": "system", "content": meo_system}] for user_msg, bot_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) # Generate the prompt using the tokenizer's chat template prompt = tokenizer.apply_chat_template(messages, tokenize=False) # Generate the response using the pipeline outputs = pipe( prompt, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, return_full_text=False # We only want the generated part ) # Extract the generated text response = outputs[0]['generated_text'] return response # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()