|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
from pathlib import Path |
|
|
|
from busam import Busam |
|
|
|
resize_to = 512 |
|
checkpoint = "weights.pth" |
|
device = "cpu" |
|
print("Loading model...") |
|
busam = Busam(checkpoint=checkpoint, device=device, side=resize_to) |
|
minmaxnorm = lambda x: (x - x.min()) / (x.max() - x.min()) |
|
|
|
def edge_inference(img, algorithm, th_low=None, th_high=None): |
|
algorithm = algorithm.lower() |
|
print("Loading image...") |
|
img = np.array(img[:, :, :3]) |
|
print("Getting features...") |
|
pred, size = busam.process_image(img, do_activate=True) |
|
print("Computing sobel...") |
|
if algorithm == "sobel": |
|
edge = busam.sobel_from_pred(pred, size) |
|
elif algorithm == "canny": |
|
th_low, th_high = th_low or 5000, th_high or 10000 |
|
edge = busam.canny_from_pred(pred, size, th_low=th_low, th_high=th_high) |
|
else: |
|
raise ValueError("algorithm should be sobel or canny") |
|
edge = edge.cpu().numpy() if isinstance(edge, torch.Tensor) else edge |
|
|
|
print("Done") |
|
return Image.fromarray( |
|
(minmaxnorm(edge) * 255).astype(np.uint8) |
|
).resize(size[::-1]) |
|
|
|
def dimred_inference( |
|
img, |
|
algorithm, |
|
resample_pct, |
|
): |
|
algorithm = algorithm.lower() |
|
img = np.array(img[:, :, :3]) |
|
print("Getting features...") |
|
pred, size = busam.process_image(img, do_activate=True) |
|
|
|
assert pred.shape[1] >= 3, "should have at least 3 channels" |
|
if algorithm == 'pca': |
|
from sklearn.decomposition import PCA |
|
reducer = PCA(n_components=3) |
|
elif algorithm == 'tsne': |
|
from sklearn.manifold import TSNE |
|
reducer = TSNE(n_components=3) |
|
elif algorithm == 'umap': |
|
from umap import UMAP |
|
reducer = UMAP(n_components=3) |
|
else: |
|
raise ValueError('algorithm should be pca, tsne or umap') |
|
np_y_hat = pred.detach().cpu().permute(1, 0, 2, 3).numpy() |
|
np_y_hat = np_y_hat.reshape(np_y_hat.shape[0], -1) |
|
np_y_hat = np_y_hat.T |
|
resample_pct = 10**resample_pct |
|
resample_size = int(resample_pct * np_y_hat.shape[0]) |
|
sampled_pixels = np_y_hat[:: np_y_hat.shape[0] // resample_size] |
|
print("dim reduction fit..." + " " * 30, end="\r") |
|
reducer = reducer.fit(sampled_pixels) |
|
print("dim reduction transform..." + " " * 30, end="\r") |
|
reducer.transform(np_y_hat[:10]) |
|
np_y_hat = reducer.transform(np_y_hat) |
|
print() |
|
print('Done. Saving...') |
|
|
|
colors = np_y_hat.reshape(pred.shape[2], pred.shape[3], 3) |
|
return Image.fromarray((minmaxnorm(colors) * 255).astype(np.uint8)).resize( |
|
size[::-1] |
|
) |
|
|
|
def segmentation_inference(img, algorithm, scale): |
|
algorithm = algorithm.lower() |
|
img = np.array(img[:, :, :3]) |
|
print("Getting features...") |
|
pred, size = busam.process_image(img, do_activate=True) |
|
print("Computing segmentation...") |
|
if algorithm == "kmeans": |
|
from sklearn.cluster import KMeans |
|
n_clusters = int(100 / 100**scale) |
|
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit( |
|
pred.view(pred.shape[1], -1).T |
|
) |
|
labels = kmeans.labels_ |
|
labels = labels.reshape(pred.shape[2], pred.shape[3]) |
|
elif algorithm == "felzenszwalb": |
|
from skimage.segmentation import felzenszwalb |
|
labels = felzenszwalb( |
|
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0), |
|
scale=10**(8*scale-3), |
|
sigma=0, |
|
min_size=50, |
|
) |
|
elif algorithm == "slic": |
|
from skimage.segmentation import slic |
|
labels = slic( |
|
(minmaxnorm(pred[0].cpu().numpy()) * 255).astype(np.uint8).transpose(1, 2, 0), |
|
n_segments = int(100 / 100**scale), |
|
compactness=0.00001, |
|
sigma=1, |
|
) |
|
elif algorithm == 'watershed': |
|
from skimage.segmentation import watershed |
|
from skimage.feature import peak_local_max |
|
from scipy import ndimage as ndi |
|
sobel = busam.sobel_from_pred(pred, size) |
|
sobel = sobel.cpu().numpy() if isinstance(sobel, torch.Tensor) else sobel |
|
|
|
sobel = np.clip(sobel / np.percentile(sobel, 95), 0, 1) |
|
distance = ndi.distance_transform_edt(sobel < 1) |
|
coords = peak_local_max(distance, min_distance=int(1+100*scale), labels=sobel<1) |
|
mask = np.zeros(sobel.shape, dtype=bool) |
|
mask[tuple(coords.T)] = True |
|
markers, _ = ndi.label(mask) |
|
labels = watershed(sobel, markers) |
|
else: |
|
raise ValueError("algorithm should be kmeans, felzenszwalb or slic") |
|
print("Done") |
|
|
|
|
|
out = labels.copy() |
|
out[labels % 4 == 0] = labels[labels % 4 == 0] * 1 / 4 |
|
out[labels % 4 == 1] = labels[labels % 4 == 1] * 4 // 4 + 1 |
|
out[labels % 4 == 2] = labels[labels % 4 == 2] * 2 // 4 + 2 |
|
out[labels % 4 == 3] = labels[labels % 4 == 3] * 3 // 4 + 3 |
|
return Image.fromarray( |
|
(minmaxnorm(out) * 255).astype(np.uint8) |
|
).resize(size[::-1]) |
|
|
|
def one_click_segmentation(img, row, col, threshold): |
|
row, col = int(row), int(col) |
|
img = np.array(img[:, :, :3]) |
|
click_map = np.zeros(img.shape[:2], dtype=bool) |
|
side = min(img.shape[:2]) // 100 |
|
click_map[max(0, row-side):min(img.shape[0], row+side), max(0, col-side//5):min(img.shape[0], col+side//5)] = True |
|
click_map[max(0, row-side//5):min(img.shape[0], row+side//5), max(0, col-side):min(img.shape[0], col+side)] = True |
|
print("Getting features...") |
|
pred, size = busam.process_image(img, do_activate=True) |
|
print("Getting mask...") |
|
mask = busam.get_mask((pred, size), (row, col)) |
|
print("Done") |
|
print('shapes=', img.shape, mask.shape, click_map.shape) |
|
return (img, [(mask, 'Prediction'), (click_map, 'Click')]) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab('Edge detection'): |
|
algorithm = "canny" |
|
with gr.Row(): |
|
def enable_sliders(algorithm): |
|
algorithm = algorithm.lower() |
|
return gr.Slider(visible=algorithm == "canny"), gr.Slider(visible=algorithm == "canny") |
|
|
|
with gr.Column(): |
|
image_input = gr.Image(label="Input Image") |
|
run_button = gr.Button("Run") |
|
algorithm = gr.Radio(["Sobel", "Canny"], label="Algorithm", value="Sobel") |
|
|
|
th_low_slider = gr.Slider(0, 32768, 10000, label="Canny's low threshold", visible=False) |
|
th_high_slider = gr.Slider(0, 32768, 20000, label="Canny's high threshold", visible=False) |
|
algorithm.change(enable_sliders, inputs=[algorithm], outputs=[th_low_slider, th_high_slider]) |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
run_button.click(edge_inference, inputs=[image_input, algorithm, th_low_slider, th_high_slider], outputs=output_image) |
|
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) |
|
|
|
with gr.Tab('Reduction to 3D'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(label="Input Image") |
|
algorithm = gr.Radio(["PCA", "TSNE", "UMAP"], label="Algorithm", value="PCA") |
|
run_button = gr.Button("Run") |
|
gr.Markdown("⚠️ UMAP is slow, TSNE is ULTRA-slow. They won't run on time. ⚠️") |
|
resample_pct = gr.Slider(-5, 0, -3, label="Resample (10^x)*100%") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
run_button.click(dimred_inference, inputs=[image_input, algorithm, resample_pct], outputs=output_image) |
|
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) |
|
|
|
with gr.Tab('Classical Segmentation'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(label="Input Image") |
|
algorithm = gr.Radio(['KMeans', 'Felzenszwalb', 'SLIC', 'Watershed'], label="Algorithm", value="SLIC") |
|
scale = gr.Slider(0.1, 1.0, 0.5, label="Scale") |
|
run_button = gr.Button("Run") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Output Image") |
|
run_button.click(segmentation_inference, inputs=[image_input, algorithm, scale], outputs=output_image) |
|
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) |
|
|
|
with gr.Tab('One-click segmentation'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(label="Input Image") |
|
threshold = gr.Slider(0, 1, 0.5, label="Threshold") |
|
with gr.Row(): |
|
row = gr.Textbox(10, label="Click's row") |
|
col = gr.Textbox(10, label="Click's column") |
|
run_button = gr.Button("Run") |
|
with gr.Column(): |
|
output_image = gr.AnnotatedImage(label="Output") |
|
run_button.click(one_click_segmentation, inputs=[image_input, row, col, threshold], outputs=output_image) |
|
gr.Examples([str(p) for p in Path('demoimgs').glob('*')], inputs=image_input) |
|
|
|
|
|
demo.launch(share=False) |
|
|