Spaces:
Runtime error
Runtime error
frankleeeee
commited on
Commit
•
9670e85
1
Parent(s):
1cf10f7
update
Browse files- app.py +393 -240
- configs/dit/train/16x256x256.py +1 -1
- configs/dit/train/1x256x256.py +1 -1
- configs/latte/train/16x256x256.py +1 -1
- configs/opensora-v1-1/inference/sample-ref.py +19 -17
- configs/opensora-v1-1/inference/sample.py +3 -2
- configs/opensora-v1-1/train/benchmark.py +2 -1
- configs/opensora-v1-1/train/image.py +2 -1
- configs/opensora-v1-1/train/image_rflow.py +88 -0
- configs/opensora-v1-1/train/stage1.py +11 -10
- configs/opensora-v1-1/train/stage2.py +11 -10
- configs/opensora-v1-1/train/stage3.py +11 -10
- configs/opensora-v1-1/train/video.py +2 -1
- configs/opensora-v1-2/inference/sample.py +43 -0
- configs/opensora-v1-2/misc/bs.py +117 -0
- configs/opensora-v1-2/misc/eval_loss.py +49 -0
- configs/opensora-v1-2/misc/extract.py +62 -0
- configs/opensora-v1-2/misc/feat.py +94 -0
- configs/opensora-v1-2/train/adapt.py +84 -0
- configs/opensora-v1-2/train/stage1.py +111 -0
- configs/opensora-v1-2/train/stage1_feat.py +59 -0
- configs/opensora-v1-2/train/stage2.py +91 -0
- configs/opensora-v1-2/train/stage3.py +92 -0
- configs/opensora/inference/16x256x256.py +1 -1
- configs/opensora/inference/16x512x512-rflow.py +35 -0
- configs/opensora/inference/16x512x512.py +1 -1
- configs/opensora/inference/64x512x512.py +1 -1
- configs/opensora/train/16x256x256-mask.py +3 -3
- configs/opensora/train/16x256x256-spee-rflow.py +64 -0
- configs/opensora/train/16x256x256-spee.py +3 -3
- configs/opensora/train/16x256x256.py +2 -2
- configs/opensora/train/16x512x512.py +1 -1
- configs/opensora/train/360x512x512.py +1 -1
- configs/opensora/train/64x512x512-sp.py +1 -1
- configs/opensora/train/64x512x512.py +1 -1
- configs/pixart/inference/1x20481B.py +36 -0
- configs/pixart/inference/1x2048MS.py +36 -0
- configs/pixart/inference/1x512x512-rflow.py +39 -0
- configs/pixart/train/16x256x256.py +1 -1
- configs/pixart/train/1x2048x2048.py +54 -0
- configs/pixart/train/1x512x512-rflow.py +55 -0
- configs/pixart/train/1x512x512.py +1 -1
- configs/pixart/train/64x512x512.py +1 -1
- configs/vae/inference/image.py +32 -0
- configs/vae/inference/video.py +32 -0
- configs/vae/train/image.py +58 -0
- configs/vae/train/video.py +58 -0
- configs/vae/train/video_disc.py +75 -0
- requirements.txt +1 -1
app.py
CHANGED
@@ -11,147 +11,25 @@ import importlib
|
|
11 |
import os
|
12 |
import subprocess
|
13 |
import sys
|
14 |
-
import re
|
15 |
-
import json
|
16 |
-
import math
|
17 |
-
|
18 |
import spaces
|
19 |
import torch
|
20 |
|
21 |
import gradio as gr
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
-
MODEL_TYPES = ["v1.
|
25 |
CONFIG_MAP = {
|
26 |
-
"v1.
|
27 |
-
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
|
28 |
}
|
29 |
HF_STDIT_MAP = {
|
30 |
-
"v1.
|
31 |
-
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
|
32 |
-
}
|
33 |
-
RESOLUTION_MAP = {
|
34 |
-
"144p": (144, 256),
|
35 |
-
"240p": (240, 426),
|
36 |
-
"360p": (360, 480),
|
37 |
-
"480p": (480, 858),
|
38 |
-
"720p": (720, 1280),
|
39 |
-
"1080p": (1080, 1920)
|
40 |
}
|
41 |
|
42 |
-
|
43 |
-
# ============================
|
44 |
-
# Utils
|
45 |
# ============================
|
46 |
-
|
47 |
-
from opensora.datasets.utils import read_from_path
|
48 |
-
|
49 |
-
refs_x = []
|
50 |
-
for reference_path in reference_paths:
|
51 |
-
if reference_path is None:
|
52 |
-
refs_x.append([])
|
53 |
-
continue
|
54 |
-
ref_path = reference_path.split(";")
|
55 |
-
ref = []
|
56 |
-
for r_path in ref_path:
|
57 |
-
r = read_from_path(r_path, image_size, transform_name="resize_crop")
|
58 |
-
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
|
59 |
-
r_x = r_x.squeeze(0)
|
60 |
-
ref.append(r_x)
|
61 |
-
refs_x.append(ref)
|
62 |
-
# refs_x: [batch, ref_num, C, T, H, W]
|
63 |
-
return refs_x
|
64 |
-
|
65 |
-
|
66 |
-
def process_mask_strategy(mask_strategy):
|
67 |
-
mask_batch = []
|
68 |
-
mask_strategy = mask_strategy.split(";")
|
69 |
-
for mask in mask_strategy:
|
70 |
-
mask_group = mask.split(",")
|
71 |
-
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
|
72 |
-
if len(mask_group) == 1:
|
73 |
-
mask_group.extend(["0", "0", "0", "1", "0"])
|
74 |
-
elif len(mask_group) == 2:
|
75 |
-
mask_group.extend(["0", "0", "1", "0"])
|
76 |
-
elif len(mask_group) == 3:
|
77 |
-
mask_group.extend(["0", "1", "0"])
|
78 |
-
elif len(mask_group) == 4:
|
79 |
-
mask_group.extend(["1", "0"])
|
80 |
-
elif len(mask_group) == 5:
|
81 |
-
mask_group.append("0")
|
82 |
-
mask_batch.append(mask_group)
|
83 |
-
return mask_batch
|
84 |
-
|
85 |
-
|
86 |
-
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
|
87 |
-
masks = []
|
88 |
-
for i, mask_strategy in enumerate(mask_strategys):
|
89 |
-
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
|
90 |
-
if mask_strategy is None:
|
91 |
-
masks.append(mask)
|
92 |
-
continue
|
93 |
-
mask_strategy = process_mask_strategy(mask_strategy)
|
94 |
-
for mst in mask_strategy:
|
95 |
-
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
|
96 |
-
loop_id = int(loop_id)
|
97 |
-
if loop_id != loop_i:
|
98 |
-
continue
|
99 |
-
m_id = int(m_id)
|
100 |
-
m_ref_start = int(m_ref_start)
|
101 |
-
m_length = int(m_length)
|
102 |
-
m_target_start = int(m_target_start)
|
103 |
-
edit_ratio = float(edit_ratio)
|
104 |
-
ref = refs_x[i][m_id] # [C, T, H, W]
|
105 |
-
if m_ref_start < 0:
|
106 |
-
m_ref_start = ref.shape[1] + m_ref_start
|
107 |
-
if m_target_start < 0:
|
108 |
-
# z: [B, C, T, H, W]
|
109 |
-
m_target_start = z.shape[2] + m_target_start
|
110 |
-
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
|
111 |
-
mask[m_target_start : m_target_start + m_length] = edit_ratio
|
112 |
-
masks.append(mask)
|
113 |
-
masks = torch.stack(masks)
|
114 |
-
return masks
|
115 |
-
|
116 |
-
|
117 |
-
def process_prompts(prompts, num_loop):
|
118 |
-
from opensora.models.text_encoder.t5 import text_preprocessing
|
119 |
-
|
120 |
-
ret_prompts = []
|
121 |
-
for prompt in prompts:
|
122 |
-
if prompt.startswith("|0|"):
|
123 |
-
prompt_list = prompt.split("|")[1:]
|
124 |
-
text_list = []
|
125 |
-
for i in range(0, len(prompt_list), 2):
|
126 |
-
start_loop = int(prompt_list[i])
|
127 |
-
text = prompt_list[i + 1]
|
128 |
-
text = text_preprocessing(text)
|
129 |
-
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
|
130 |
-
text_list.extend([text] * (end_loop - start_loop))
|
131 |
-
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
|
132 |
-
ret_prompts.append(text_list)
|
133 |
-
else:
|
134 |
-
prompt = text_preprocessing(prompt)
|
135 |
-
ret_prompts.append([prompt] * num_loop)
|
136 |
-
return ret_prompts
|
137 |
-
|
138 |
-
|
139 |
-
def extract_json_from_prompts(prompts):
|
140 |
-
additional_infos = []
|
141 |
-
ret_prompts = []
|
142 |
-
for prompt in prompts:
|
143 |
-
parts = re.split(r"(?=[{\[])", prompt)
|
144 |
-
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
|
145 |
-
ret_prompts.append(parts[0])
|
146 |
-
if len(parts) == 1:
|
147 |
-
additional_infos.append({})
|
148 |
-
else:
|
149 |
-
additional_infos.append(json.loads(parts[1]))
|
150 |
-
return ret_prompts, additional_infos
|
151 |
-
|
152 |
-
|
153 |
-
# ============================
|
154 |
-
# Runtime Environment
|
155 |
# ============================
|
156 |
def install_dependencies(enable_optimization=False):
|
157 |
"""
|
@@ -223,13 +101,9 @@ def build_models(model_type, config, enable_optimization=False):
|
|
223 |
# build stdit
|
224 |
# we load model from HuggingFace directly so that we don't need to
|
225 |
# handle model download logic in HuggingFace Space
|
226 |
-
from
|
227 |
-
|
228 |
-
stdit =
|
229 |
-
HF_STDIT_MAP[model_type],
|
230 |
-
enable_flash_attn=enable_optimization,
|
231 |
-
trust_remote_code=True,
|
232 |
-
).cuda()
|
233 |
|
234 |
# build scheduler
|
235 |
from opensora.registry import SCHEDULERS
|
@@ -253,13 +127,13 @@ def parse_args():
|
|
253 |
parser = argparse.ArgumentParser()
|
254 |
parser.add_argument(
|
255 |
"--model-type",
|
256 |
-
default="v1.
|
257 |
choices=MODEL_TYPES,
|
258 |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
259 |
)
|
260 |
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
|
261 |
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
|
262 |
-
parser.add_argument("--host", default=
|
263 |
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
|
264 |
parser.add_argument(
|
265 |
"--enable-optimization",
|
@@ -279,6 +153,8 @@ def parse_args():
|
|
279 |
# read config
|
280 |
args = parse_args()
|
281 |
config = read_config(CONFIG_MAP[args.model_type])
|
|
|
|
|
282 |
|
283 |
# make outputs dir
|
284 |
os.makedirs(args.output, exist_ok=True)
|
@@ -293,6 +169,24 @@ install_dependencies(enable_optimization=args.enable_optimization)
|
|
293 |
# import after installation
|
294 |
from opensora.datasets import IMG_FPS, save_sample
|
295 |
from opensora.utils.misc import to_torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
|
297 |
# some global variables
|
298 |
dtype = to_torch_dtype(config.dtype)
|
@@ -302,117 +196,278 @@ device = torch.device("cuda")
|
|
302 |
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
|
303 |
|
304 |
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
307 |
with torch.inference_mode():
|
308 |
# ======================
|
309 |
-
# 1. Preparation
|
310 |
# ======================
|
311 |
# parse the inputs
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
num_seconds = int(length.rstrip('s'))
|
316 |
-
total_number_of_frames = num_seconds * config.fps / config.frame_interval
|
317 |
-
num_loop = math.ceil(total_number_of_frames / config.num_frames)
|
318 |
-
|
319 |
-
# prepare model args
|
320 |
-
model_args = dict()
|
321 |
-
height = torch.tensor([resolution[0]], device=device, dtype=dtype)
|
322 |
-
width = torch.tensor([resolution[1]], device=device, dtype=dtype)
|
323 |
-
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
|
324 |
-
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
|
325 |
-
if config.num_frames == 1:
|
326 |
-
config.fps = IMG_FPS
|
327 |
-
fps = torch.tensor([config.fps], device=device, dtype=dtype)
|
328 |
-
model_args["height"] = height
|
329 |
-
model_args["width"] = width
|
330 |
-
model_args["num_frames"] = num_frames
|
331 |
-
model_args["ar"] = ar
|
332 |
-
model_args["fps"] = fps
|
333 |
-
|
334 |
-
# compute latent size
|
335 |
-
input_size = (config.num_frames, *resolution)
|
336 |
latent_size = vae.get_latent_size(input_size)
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
video_clips = []
|
343 |
-
|
344 |
-
# prepare mask strategy
|
345 |
-
if mode == "Text2Video":
|
346 |
mask_strategy = [None]
|
347 |
-
elif mode == "
|
348 |
-
|
|
|
|
|
|
|
349 |
else:
|
350 |
raise ValueError(f"Invalid mode: {mode}")
|
351 |
-
|
352 |
-
#
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
363 |
else:
|
364 |
raise ValueError(f"Invalid mode: {mode}")
|
|
|
|
|
|
|
|
|
365 |
|
366 |
-
#
|
367 |
-
|
368 |
-
# 4.4 sample in hidden space
|
369 |
-
batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
|
370 |
-
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
|
371 |
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
mask_strategy[j] = ""
|
385 |
-
else:
|
386 |
-
mask_strategy[j] += ";"
|
387 |
-
mask_strategy[
|
388 |
-
j
|
389 |
-
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
|
390 |
-
|
391 |
-
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
|
392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
# 4.6. diffusion sampling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
samples = scheduler.sample(
|
395 |
stdit,
|
396 |
text_encoder,
|
397 |
z=z,
|
398 |
-
prompts=
|
399 |
device=device,
|
400 |
additional_args=model_args,
|
401 |
-
|
|
|
402 |
)
|
403 |
-
samples = vae.decode(samples.to(dtype))
|
404 |
video_clips.append(samples)
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
return saved_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
|
417 |
|
418 |
def main():
|
@@ -442,31 +497,119 @@ def main():
|
|
442 |
|
443 |
with gr.Row():
|
444 |
with gr.Column():
|
445 |
-
mode = gr.Radio(
|
446 |
-
choices=["Text2Video", "Image2Video"],
|
447 |
-
value="Text2Video",
|
448 |
-
label="Usage",
|
449 |
-
info="Choose your usage scenario",
|
450 |
-
)
|
451 |
prompt_text = gr.Textbox(
|
452 |
label="Prompt",
|
453 |
placeholder="Describe your video here",
|
454 |
-
lines=4
|
455 |
)
|
|
|
|
|
|
|
|
|
456 |
resolution = gr.Radio(
|
457 |
-
choices=["144p", "240p", "360p", "480p", "720p"
|
458 |
-
value="
|
459 |
label="Resolution",
|
460 |
)
|
|
|
|
|
|
|
|
|
|
|
461 |
length = gr.Radio(
|
462 |
-
choices=["2s", "4s", "8s"],
|
463 |
value="2s",
|
464 |
label="Video Length",
|
465 |
-
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
|
466 |
)
|
467 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
reference_image = gr.Image(
|
469 |
-
label="
|
|
|
470 |
)
|
471 |
|
472 |
with gr.Column():
|
@@ -476,14 +619,24 @@ def main():
|
|
476 |
)
|
477 |
|
478 |
with gr.Row():
|
479 |
-
|
|
|
480 |
|
481 |
|
482 |
-
|
483 |
-
fn=
|
484 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
485 |
outputs=output_video
|
486 |
)
|
|
|
|
|
|
|
|
|
487 |
|
488 |
# launch
|
489 |
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
|
|
11 |
import os
|
12 |
import subprocess
|
13 |
import sys
|
|
|
|
|
|
|
|
|
14 |
import spaces
|
15 |
import torch
|
16 |
|
17 |
import gradio as gr
|
18 |
+
from tempfile import NamedTemporaryFile
|
19 |
+
import datetime
|
20 |
+
|
21 |
|
22 |
|
23 |
+
MODEL_TYPES = ["v1.2-stage3"]
|
24 |
CONFIG_MAP = {
|
25 |
+
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
|
|
|
26 |
}
|
27 |
HF_STDIT_MAP = {
|
28 |
+
"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
}
|
30 |
|
|
|
|
|
|
|
31 |
# ============================
|
32 |
+
# Prepare Runtime Environment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# ============================
|
34 |
def install_dependencies(enable_optimization=False):
|
35 |
"""
|
|
|
101 |
# build stdit
|
102 |
# we load model from HuggingFace directly so that we don't need to
|
103 |
# handle model download logic in HuggingFace Space
|
104 |
+
from opensora.models.stdit.stdit3 import STDiT3
|
105 |
+
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type])
|
106 |
+
stdit = stdit.cuda()
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# build scheduler
|
109 |
from opensora.registry import SCHEDULERS
|
|
|
127 |
parser = argparse.ArgumentParser()
|
128 |
parser.add_argument(
|
129 |
"--model-type",
|
130 |
+
default="v1.2-stage3",
|
131 |
choices=MODEL_TYPES,
|
132 |
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
133 |
)
|
134 |
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
|
135 |
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
|
136 |
+
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
|
137 |
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
|
138 |
parser.add_argument(
|
139 |
"--enable-optimization",
|
|
|
153 |
# read config
|
154 |
args = parse_args()
|
155 |
config = read_config(CONFIG_MAP[args.model_type])
|
156 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
157 |
+
torch.backends.cudnn.allow_tf32 = True
|
158 |
|
159 |
# make outputs dir
|
160 |
os.makedirs(args.output, exist_ok=True)
|
|
|
169 |
# import after installation
|
170 |
from opensora.datasets import IMG_FPS, save_sample
|
171 |
from opensora.utils.misc import to_torch_dtype
|
172 |
+
from opensora.utils.inference_utils import (
|
173 |
+
append_generated,
|
174 |
+
apply_mask_strategy,
|
175 |
+
collect_references_batch,
|
176 |
+
extract_json_from_prompts,
|
177 |
+
extract_prompts_loop,
|
178 |
+
prepare_multi_resolution_info,
|
179 |
+
dframe_to_frame,
|
180 |
+
append_score_to_prompts,
|
181 |
+
has_openai_key,
|
182 |
+
refine_prompts_by_openai,
|
183 |
+
add_watermark,
|
184 |
+
get_random_prompt_by_openai,
|
185 |
+
split_prompt,
|
186 |
+
merge_prompt
|
187 |
+
)
|
188 |
+
from opensora.models.text_encoder.t5 import text_preprocessing
|
189 |
+
from opensora.datasets.aspect import get_image_size, get_num_frames
|
190 |
|
191 |
# some global variables
|
192 |
dtype = to_torch_dtype(config.dtype)
|
|
|
196 |
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
|
197 |
|
198 |
|
199 |
+
def run_inference(mode, prompt_text, resolution, aspect_ratio, length, motion_strength, aesthetic_score, use_motion_strength, use_aesthetic_score, camera_motion, reference_image, refine_prompt, fps, num_loop, seed, sampling_steps, cfg_scale):
|
200 |
+
if prompt_text is None or prompt_text == "":
|
201 |
+
gr.Warning("Your prompt is empty, please enter a valid prompt")
|
202 |
+
return None
|
203 |
+
|
204 |
+
torch.manual_seed(seed)
|
205 |
with torch.inference_mode():
|
206 |
# ======================
|
207 |
+
# 1. Preparation arguments
|
208 |
# ======================
|
209 |
# parse the inputs
|
210 |
+
# frame_interval must be 1 so we ignore it here
|
211 |
+
image_size = get_image_size(resolution, aspect_ratio)
|
212 |
+
|
213 |
+
# compute generation parameters
|
214 |
+
if mode == "Text2Image":
|
215 |
+
num_frames = 1
|
216 |
+
fps = IMG_FPS
|
217 |
+
else:
|
218 |
+
num_frames = config.num_frames
|
219 |
+
num_frames = get_num_frames(length)
|
220 |
+
|
221 |
+
condition_frame_length = int(num_frames / 17 * 5 / 3)
|
222 |
+
condition_frame_edit = 0.0
|
223 |
|
224 |
+
input_size = (num_frames, *image_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
latent_size = vae.get_latent_size(input_size)
|
226 |
+
multi_resolution = "OpenSora"
|
227 |
+
align = 5
|
228 |
+
|
229 |
+
# == prepare mask strategy ==
|
230 |
+
if mode == "Text2Image":
|
|
|
|
|
|
|
|
|
231 |
mask_strategy = [None]
|
232 |
+
elif mode == "Text2Video":
|
233 |
+
if reference_image is not None:
|
234 |
+
mask_strategy = ['0']
|
235 |
+
else:
|
236 |
+
mask_strategy = [None]
|
237 |
else:
|
238 |
raise ValueError(f"Invalid mode: {mode}")
|
239 |
+
|
240 |
+
# == prepare reference ==
|
241 |
+
if mode == "Text2Image":
|
242 |
+
refs = [""]
|
243 |
+
elif mode == "Text2Video":
|
244 |
+
if reference_image is not None:
|
245 |
+
# save image to disk
|
246 |
+
from PIL import Image
|
247 |
+
im = Image.fromarray(reference_image)
|
248 |
+
temp_file = NamedTemporaryFile(suffix=".png")
|
249 |
+
im.save(temp_file.name)
|
250 |
+
refs = [temp_file.name]
|
251 |
+
else:
|
252 |
+
refs = [""]
|
253 |
else:
|
254 |
raise ValueError(f"Invalid mode: {mode}")
|
255 |
+
|
256 |
+
# == get json from prompts ==
|
257 |
+
batch_prompts = [prompt_text]
|
258 |
+
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
|
259 |
|
260 |
+
# == get reference for condition ==
|
261 |
+
refs = collect_references_batch(refs, vae, image_size)
|
|
|
|
|
|
|
262 |
|
263 |
+
# == multi-resolution info ==
|
264 |
+
model_args = prepare_multi_resolution_info(
|
265 |
+
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
|
266 |
+
)
|
267 |
+
|
268 |
+
# == process prompts step by step ==
|
269 |
+
# 0. split prompt
|
270 |
+
# each element in the list is [prompt_segment_list, loop_idx_list]
|
271 |
+
batched_prompt_segment_list = []
|
272 |
+
batched_loop_idx_list = []
|
273 |
+
for prompt in batch_prompts:
|
274 |
+
prompt_segment_list, loop_idx_list = split_prompt(prompt)
|
275 |
+
batched_prompt_segment_list.append(prompt_segment_list)
|
276 |
+
batched_loop_idx_list.append(loop_idx_list)
|
277 |
+
|
278 |
+
# 1. refine prompt by openai
|
279 |
+
if refine_prompt:
|
280 |
+
# check if openai key is provided
|
281 |
+
if not has_openai_key():
|
282 |
+
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
|
283 |
+
else:
|
284 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
285 |
+
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
|
286 |
+
|
287 |
+
# process scores
|
288 |
+
aesthetic_score = aesthetic_score if use_aesthetic_score else None
|
289 |
+
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
|
290 |
+
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
|
291 |
+
# 2. append score
|
292 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
293 |
+
batched_prompt_segment_list[idx] = append_score_to_prompts(
|
294 |
+
prompt_segment_list,
|
295 |
+
aes=aesthetic_score,
|
296 |
+
flow=motion_strength,
|
297 |
+
camera_motion=camera_motion,
|
298 |
+
)
|
299 |
|
300 |
+
# 3. clean prompt with T5
|
301 |
+
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
|
302 |
+
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
|
303 |
+
|
304 |
+
# 4. merge to obtain the final prompt
|
305 |
+
batch_prompts = []
|
306 |
+
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
|
307 |
+
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
|
308 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
|
310 |
+
# =========================
|
311 |
+
# Generate image/video
|
312 |
+
# =========================
|
313 |
+
video_clips = []
|
314 |
+
|
315 |
+
for loop_i in range(num_loop):
|
316 |
+
# 4.4 sample in hidden space
|
317 |
+
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
|
318 |
+
|
319 |
+
# == loop ==
|
320 |
+
if loop_i > 0:
|
321 |
+
refs, mask_strategy = append_generated(
|
322 |
+
vae,
|
323 |
+
video_clips[-1],
|
324 |
+
refs,
|
325 |
+
mask_strategy,
|
326 |
+
loop_i,
|
327 |
+
condition_frame_length,
|
328 |
+
condition_frame_edit
|
329 |
+
)
|
330 |
+
|
331 |
+
# == sampling ==
|
332 |
+
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
|
333 |
+
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
|
334 |
+
|
335 |
# 4.6. diffusion sampling
|
336 |
+
# hack to update num_sampling_steps and cfg_scale
|
337 |
+
scheduler_kwargs = config.scheduler.copy()
|
338 |
+
scheduler_kwargs.pop('type')
|
339 |
+
scheduler_kwargs['num_sampling_steps'] = sampling_steps
|
340 |
+
scheduler_kwargs['cfg_scale'] = cfg_scale
|
341 |
+
|
342 |
+
scheduler.__init__(
|
343 |
+
**scheduler_kwargs
|
344 |
+
)
|
345 |
samples = scheduler.sample(
|
346 |
stdit,
|
347 |
text_encoder,
|
348 |
z=z,
|
349 |
+
prompts=batch_prompts_loop,
|
350 |
device=device,
|
351 |
additional_args=model_args,
|
352 |
+
progress=True,
|
353 |
+
mask=masks,
|
354 |
)
|
355 |
+
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
|
356 |
video_clips.append(samples)
|
357 |
+
|
358 |
+
# =========================
|
359 |
+
# Save output
|
360 |
+
# =========================
|
361 |
+
video_clips = [val[0] for val in video_clips]
|
362 |
+
for i in range(1, num_loop):
|
363 |
+
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
|
364 |
+
video = torch.cat(video_clips, dim=1)
|
365 |
+
current_datetime = datetime.datetime.now()
|
366 |
+
timestamp = current_datetime.timestamp()
|
367 |
+
save_path = os.path.join(args.output, f"output_{timestamp}")
|
368 |
+
saved_path = save_sample(video, save_path=save_path, fps=24)
|
369 |
+
torch.cuda.empty_cache()
|
370 |
+
|
371 |
+
# add watermark
|
372 |
+
# all watermarked videos should have a _watermarked suffix
|
373 |
+
if mode != "Text2Image":
|
374 |
+
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
|
375 |
+
success = add_watermark(saved_path, "./assets/images/watermark/watermark.png", watermarked_path)
|
376 |
+
if success:
|
377 |
+
return watermarked_path
|
378 |
+
else:
|
379 |
return saved_path
|
380 |
+
else:
|
381 |
+
return saved_path
|
382 |
+
|
383 |
+
|
384 |
+
@spaces.GPU(duration=200)
|
385 |
+
def run_image_inference(
|
386 |
+
prompt_text,
|
387 |
+
resolution,
|
388 |
+
aspect_ratio,
|
389 |
+
length,
|
390 |
+
motion_strength,
|
391 |
+
aesthetic_score,
|
392 |
+
use_motion_strength,
|
393 |
+
use_aesthetic_score,
|
394 |
+
camera_motion,
|
395 |
+
reference_image,
|
396 |
+
refine_prompt,
|
397 |
+
fps,
|
398 |
+
num_loop,
|
399 |
+
seed,
|
400 |
+
sampling_steps,
|
401 |
+
cfg_scale):
|
402 |
+
return run_inference(
|
403 |
+
"Text2Image",
|
404 |
+
prompt_text,
|
405 |
+
resolution,
|
406 |
+
aspect_ratio,
|
407 |
+
length,
|
408 |
+
motion_strength,
|
409 |
+
aesthetic_score,
|
410 |
+
use_motion_strength,
|
411 |
+
use_aesthetic_score,
|
412 |
+
camera_motion,
|
413 |
+
reference_image,
|
414 |
+
refine_prompt,
|
415 |
+
fps,
|
416 |
+
num_loop,
|
417 |
+
seed,
|
418 |
+
sampling_steps,
|
419 |
+
cfg_scale)
|
420 |
+
|
421 |
+
@spaces.GPU(duration=200)
|
422 |
+
def run_video_inference(
|
423 |
+
prompt_text,
|
424 |
+
resolution,
|
425 |
+
aspect_ratio,
|
426 |
+
length,
|
427 |
+
motion_strength,
|
428 |
+
aesthetic_score,
|
429 |
+
use_motion_strength,
|
430 |
+
use_aesthetic_score,
|
431 |
+
camera_motion,
|
432 |
+
reference_image,
|
433 |
+
refine_prompt,
|
434 |
+
fps,
|
435 |
+
num_loop,
|
436 |
+
seed,
|
437 |
+
sampling_steps,
|
438 |
+
cfg_scale):
|
439 |
+
# if (resolution == "480p" and length == "16s") or \
|
440 |
+
# (resolution == "720p" and length in ["8s", "16s"]):
|
441 |
+
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
|
442 |
+
# else:
|
443 |
+
return run_inference(
|
444 |
+
"Text2Video",
|
445 |
+
prompt_text,
|
446 |
+
resolution,
|
447 |
+
aspect_ratio,
|
448 |
+
length,
|
449 |
+
motion_strength,
|
450 |
+
aesthetic_score,
|
451 |
+
use_motion_strength,
|
452 |
+
use_aesthetic_score,
|
453 |
+
camera_motion,
|
454 |
+
reference_image,
|
455 |
+
refine_prompt,
|
456 |
+
fps,
|
457 |
+
num_loop,
|
458 |
+
seed,
|
459 |
+
sampling_steps,
|
460 |
+
cfg_scale
|
461 |
+
)
|
462 |
+
|
463 |
+
|
464 |
+
def generate_random_prompt():
|
465 |
+
if "OPENAI_API_KEY" not in os.environ:
|
466 |
+
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
|
467 |
+
return None
|
468 |
+
else:
|
469 |
+
prompt_text = get_random_prompt_by_openai()
|
470 |
+
return prompt_text
|
471 |
|
472 |
|
473 |
def main():
|
|
|
497 |
|
498 |
with gr.Row():
|
499 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
prompt_text = gr.Textbox(
|
501 |
label="Prompt",
|
502 |
placeholder="Describe your video here",
|
503 |
+
lines=4
|
504 |
)
|
505 |
+
refine_prompt = gr.Checkbox(value=True, label="Refine prompt with GPT4o")
|
506 |
+
random_prompt_btn = gr.Button("Random Prompt By GPT4o")
|
507 |
+
|
508 |
+
gr.Markdown("## Basic Settings")
|
509 |
resolution = gr.Radio(
|
510 |
+
choices=["144p", "240p", "360p", "480p", "720p"],
|
511 |
+
value="480p",
|
512 |
label="Resolution",
|
513 |
)
|
514 |
+
aspect_ratio = gr.Radio(
|
515 |
+
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
|
516 |
+
value="9:16",
|
517 |
+
label="Aspect Ratio (H:W)",
|
518 |
+
)
|
519 |
length = gr.Radio(
|
520 |
+
choices=["2s", "4s", "8s", "16s"],
|
521 |
value="2s",
|
522 |
label="Video Length",
|
523 |
+
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
|
524 |
)
|
525 |
|
526 |
+
with gr.Row():
|
527 |
+
seed = gr.Slider(
|
528 |
+
value=1024,
|
529 |
+
minimum=1,
|
530 |
+
maximum=2048,
|
531 |
+
step=1,
|
532 |
+
label="Seed"
|
533 |
+
)
|
534 |
+
|
535 |
+
sampling_steps = gr.Slider(
|
536 |
+
value=30,
|
537 |
+
minimum=1,
|
538 |
+
maximum=200,
|
539 |
+
step=1,
|
540 |
+
label="Sampling steps"
|
541 |
+
)
|
542 |
+
cfg_scale = gr.Slider(
|
543 |
+
value=7.0,
|
544 |
+
minimum=0.0,
|
545 |
+
maximum=10.0,
|
546 |
+
step=0.1,
|
547 |
+
label="CFG Scale"
|
548 |
+
)
|
549 |
+
|
550 |
+
with gr.Row():
|
551 |
+
with gr.Column():
|
552 |
+
motion_strength = gr.Slider(
|
553 |
+
value=5,
|
554 |
+
minimum=0,
|
555 |
+
maximum=100,
|
556 |
+
step=1,
|
557 |
+
label="Motion Strength",
|
558 |
+
info="only effective for video generation"
|
559 |
+
)
|
560 |
+
use_motion_strength = gr.Checkbox(value=False, label="Enable")
|
561 |
+
|
562 |
+
with gr.Column():
|
563 |
+
aesthetic_score = gr.Slider(
|
564 |
+
value=6.5,
|
565 |
+
minimum=4,
|
566 |
+
maximum=7,
|
567 |
+
step=0.1,
|
568 |
+
label="Aesthetic",
|
569 |
+
info="effective for text & video generation"
|
570 |
+
)
|
571 |
+
use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
|
572 |
+
|
573 |
+
camera_motion = gr.Radio(
|
574 |
+
value="none",
|
575 |
+
label="Camera Motion",
|
576 |
+
choices=[
|
577 |
+
"none",
|
578 |
+
"pan right",
|
579 |
+
"pan left",
|
580 |
+
"tilt up",
|
581 |
+
"tilt down",
|
582 |
+
"zoom in",
|
583 |
+
"zoom out",
|
584 |
+
"static"
|
585 |
+
],
|
586 |
+
interactive=True
|
587 |
+
)
|
588 |
+
|
589 |
+
gr.Markdown("## Advanced Settings")
|
590 |
+
with gr.Row():
|
591 |
+
fps = gr.Slider(
|
592 |
+
value=24,
|
593 |
+
minimum=1,
|
594 |
+
maximum=60,
|
595 |
+
step=1,
|
596 |
+
label="FPS",
|
597 |
+
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure"
|
598 |
+
)
|
599 |
+
num_loop = gr.Slider(
|
600 |
+
value=1,
|
601 |
+
minimum=1,
|
602 |
+
maximum=20,
|
603 |
+
step=1,
|
604 |
+
label="Number of Loops",
|
605 |
+
info="This will change the length of the generated video, keep it to 1 if you are not sure"
|
606 |
+
)
|
607 |
+
|
608 |
+
|
609 |
+
gr.Markdown("## Reference Image")
|
610 |
reference_image = gr.Image(
|
611 |
+
label="Image (optional)",
|
612 |
+
show_download_button=True
|
613 |
)
|
614 |
|
615 |
with gr.Column():
|
|
|
619 |
)
|
620 |
|
621 |
with gr.Row():
|
622 |
+
image_gen_button = gr.Button("Generate image")
|
623 |
+
video_gen_button = gr.Button("Generate video")
|
624 |
|
625 |
|
626 |
+
image_gen_button.click(
|
627 |
+
fn=run_image_inference,
|
628 |
+
inputs=[prompt_text, resolution, aspect_ratio, length, motion_strength, aesthetic_score, use_motion_strength, use_aesthetic_score, camera_motion, reference_image, refine_prompt, fps, num_loop, seed, sampling_steps, cfg_scale],
|
629 |
+
outputs=reference_image
|
630 |
+
)
|
631 |
+
video_gen_button.click(
|
632 |
+
fn=run_video_inference,
|
633 |
+
inputs=[prompt_text, resolution, aspect_ratio, length, motion_strength, aesthetic_score, use_motion_strength, use_aesthetic_score, camera_motion, reference_image, refine_prompt, fps, num_loop, seed, sampling_steps, cfg_scale],
|
634 |
outputs=output_video
|
635 |
)
|
636 |
+
random_prompt_btn.click(
|
637 |
+
fn=generate_random_prompt,
|
638 |
+
outputs=prompt_text
|
639 |
+
)
|
640 |
|
641 |
# launch
|
642 |
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
configs/dit/train/16x256x256.py
CHANGED
@@ -18,7 +18,7 @@ sp_size = 1
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
-
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
|
|
18 |
model = dict(
|
19 |
type="DiT-XL/2",
|
20 |
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
+
enable_flash_attn=True,
|
22 |
enable_layernorm_kernel=True,
|
23 |
)
|
24 |
vae = dict(
|
configs/dit/train/1x256x256.py
CHANGED
@@ -19,7 +19,7 @@ sp_size = 1
|
|
19 |
model = dict(
|
20 |
type="DiT-XL/2",
|
21 |
no_temporal_pos_emb=True,
|
22 |
-
|
23 |
enable_layernorm_kernel=True,
|
24 |
)
|
25 |
vae = dict(
|
|
|
19 |
model = dict(
|
20 |
type="DiT-XL/2",
|
21 |
no_temporal_pos_emb=True,
|
22 |
+
enable_flash_attn=True,
|
23 |
enable_layernorm_kernel=True,
|
24 |
)
|
25 |
vae = dict(
|
configs/latte/train/16x256x256.py
CHANGED
@@ -17,7 +17,7 @@ sp_size = 1
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
-
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
|
|
17 |
# Define model
|
18 |
model = dict(
|
19 |
type="Latte-XL/2",
|
20 |
+
enable_flash_attn=True,
|
21 |
enable_layernorm_kernel=True,
|
22 |
)
|
23 |
vae = dict(
|
configs/opensora-v1-1/inference/sample-ref.py
CHANGED
@@ -7,33 +7,35 @@ multi_resolution = "STDiT2"
|
|
7 |
# Condition
|
8 |
prompt_path = None
|
9 |
prompt = [
|
10 |
-
|
11 |
-
'
|
12 |
-
|
|
|
|
|
|
|
13 |
]
|
14 |
|
15 |
loop = 2
|
16 |
condition_frame_length = 4
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
]
|
22 |
-
#
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"0",
|
28 |
-
]
|
29 |
|
30 |
# Define model
|
31 |
model = dict(
|
32 |
type="STDiT2-XL/2",
|
33 |
-
from_pretrained=
|
34 |
input_sq_size=512,
|
35 |
qk_norm=True,
|
36 |
-
|
|
|
37 |
enable_layernorm_kernel=True,
|
38 |
)
|
39 |
vae = dict(
|
|
|
7 |
# Condition
|
8 |
prompt_path = None
|
9 |
prompt = [
|
10 |
+
'Drone view of waves crashing against the rugged cliffs along Big Sur\'s garay point beach. {"reference_path": "assets/images/condition/cliff.png", "mask_strategy": "0"}',
|
11 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png","mask_strategy": "0"}',
|
12 |
+
'A car driving on the ocean.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4","mask_strategy": "0,0,-8,0,8"}',
|
13 |
+
'A snowy forest.{"reference_path": "https://cdn.pixabay.com/video/2021/04/25/72171-542991404_large.mp4","mask_strategy": "0,0,0,0,15,0.8"}',
|
14 |
+
'A breathtaking sunrise scene.{"reference_path": "assets/images/condition/sunset1.png;assets/images/condition/sunset2.png","mask_strategy": "0;0,1,0,-1,1"}',
|
15 |
+
'|0|a white jeep equipped with a roof rack driving on a dirt road in a coniferous forest.|2|a white jeep equipped with a roof rack driving on a dirt road in the desert.|4|a white jeep equipped with a roof rack driving on a dirt road in a mountain.|6|A white jeep equipped with a roof rack driving on a dirt road in a city.|8|a white jeep equipped with a roof rack driving on a dirt road on the surface of a river.|10|a white jeep equipped with a roof rack driving on a dirt road under the lake.|12|a white jeep equipped with a roof rack flying into the sky.|14|a white jeep equipped with a roof rack driving in the universe. Earth is the background.{"reference_path": "https://cdn.openai.com/tmp/s/interp/d0.mp4", "mask_strategy": "0,0,0,0,15"}',
|
16 |
]
|
17 |
|
18 |
loop = 2
|
19 |
condition_frame_length = 4
|
20 |
+
# (
|
21 |
+
# loop id, [the loop index of the condition image or video]
|
22 |
+
# reference id, [the index of the condition image or video in the reference_path]
|
23 |
+
# reference start, [the start frame of the condition image or video]
|
24 |
+
# target start, [the location to insert]
|
25 |
+
# length, [the number of frames to insert]
|
26 |
+
# edit_ratio [the edit rate of the condition image or video]
|
27 |
+
# )
|
28 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/config.md#advanced-inference-config for more details
|
29 |
+
# See https://github.com/hpcaitech/Open-Sora/blob/main/docs/commands.md#inference-with-open-sora-11 for more examples
|
|
|
|
|
30 |
|
31 |
# Define model
|
32 |
model = dict(
|
33 |
type="STDiT2-XL/2",
|
34 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
35 |
input_sq_size=512,
|
36 |
qk_norm=True,
|
37 |
+
qk_norm_legacy=True,
|
38 |
+
enable_flash_attn=True,
|
39 |
enable_layernorm_kernel=True,
|
40 |
)
|
41 |
vae = dict(
|
configs/opensora-v1-1/inference/sample.py
CHANGED
@@ -7,10 +7,11 @@ multi_resolution = "STDiT2"
|
|
7 |
# Define model
|
8 |
model = dict(
|
9 |
type="STDiT2-XL/2",
|
10 |
-
from_pretrained=
|
11 |
input_sq_size=512,
|
12 |
qk_norm=True,
|
13 |
-
|
|
|
14 |
enable_layernorm_kernel=True,
|
15 |
)
|
16 |
vae = dict(
|
|
|
7 |
# Define model
|
8 |
model = dict(
|
9 |
type="STDiT2-XL/2",
|
10 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v2-stage3",
|
11 |
input_sq_size=512,
|
12 |
qk_norm=True,
|
13 |
+
qk_norm_legacy=True,
|
14 |
+
enable_flash_attn=True,
|
15 |
enable_layernorm_kernel=True,
|
16 |
)
|
17 |
vae = dict(
|
configs/opensora-v1-1/train/benchmark.py
CHANGED
@@ -65,7 +65,8 @@ model = dict(
|
|
65 |
from_pretrained=None,
|
66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
qk_norm=True,
|
68 |
-
|
|
|
69 |
enable_layernorm_kernel=True,
|
70 |
)
|
71 |
vae = dict(
|
|
|
65 |
from_pretrained=None,
|
66 |
input_sq_size=512, # pretrained model is trained on 512x512
|
67 |
qk_norm=True,
|
68 |
+
qk_norm_legacy=True,
|
69 |
+
enable_flash_attn=True,
|
70 |
enable_layernorm_kernel=True,
|
71 |
)
|
72 |
vae = dict(
|
configs/opensora-v1-1/train/image.py
CHANGED
@@ -29,7 +29,8 @@ model = dict(
|
|
29 |
from_pretrained=None,
|
30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
qk_norm=True,
|
32 |
-
|
|
|
33 |
enable_layernorm_kernel=True,
|
34 |
)
|
35 |
vae = dict(
|
|
|
29 |
from_pretrained=None,
|
30 |
input_sq_size=512, # pretrained model is trained on 512x512
|
31 |
qk_norm=True,
|
32 |
+
qk_norm_legacy=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
enable_layernorm_kernel=True,
|
35 |
)
|
36 |
vae = dict(
|
configs/opensora-v1-1/train/image_rflow.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
# dataset = dict(
|
3 |
+
# type="VariableVideoTextDataset",
|
4 |
+
# data_path=None,
|
5 |
+
# num_frames=None,
|
6 |
+
# frame_interval=3,
|
7 |
+
# image_size=(None, None),
|
8 |
+
# transform_name="resize_crop",
|
9 |
+
# )
|
10 |
+
dataset = dict(
|
11 |
+
type="VideoTextDataset",
|
12 |
+
data_path=None,
|
13 |
+
num_frames=1,
|
14 |
+
frame_interval=1,
|
15 |
+
image_size=(256, 256),
|
16 |
+
transform_name="center",
|
17 |
+
)
|
18 |
+
bucket_config = { # 6s/it
|
19 |
+
"256": {1: (1.0, 256)},
|
20 |
+
"512": {1: (1.0, 80)},
|
21 |
+
"480p": {1: (1.0, 52)},
|
22 |
+
"1024": {1: (1.0, 20)},
|
23 |
+
"1080p": {1: (1.0, 8)},
|
24 |
+
}
|
25 |
+
|
26 |
+
# Define acceleration
|
27 |
+
num_workers = 16
|
28 |
+
dtype = "bf16"
|
29 |
+
grad_checkpoint = True
|
30 |
+
plugin = "zero2"
|
31 |
+
sp_size = 1
|
32 |
+
|
33 |
+
# Define model
|
34 |
+
# model = dict(
|
35 |
+
# type="DiT-XL/2",
|
36 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
37 |
+
# # input_sq_size=512, # pretrained model is trained on 512x512
|
38 |
+
# enable_flash_attn=True,
|
39 |
+
# enable_layernorm_kernel=True,
|
40 |
+
# )
|
41 |
+
model = dict(
|
42 |
+
type="PixArt-XL/2",
|
43 |
+
space_scale=1.0,
|
44 |
+
time_scale=1.0,
|
45 |
+
no_temporal_pos_emb=True,
|
46 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
47 |
+
enable_flash_attn=True,
|
48 |
+
enable_layernorm_kernel=True,
|
49 |
+
)
|
50 |
+
# model = dict(
|
51 |
+
# type="DiT-XL/2",
|
52 |
+
# # space_scale=1.0,
|
53 |
+
# # time_scale=1.0,
|
54 |
+
# no_temporal_pos_emb=True,
|
55 |
+
# # from_pretrained="PixArt-XL-2-512x512.pth",
|
56 |
+
# from_pretrained="/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/PixArt-XL-2-512x512.pth",
|
57 |
+
# enable_flash_attn=True,
|
58 |
+
# enable_layernorm_kernel=True,
|
59 |
+
# )
|
60 |
+
vae = dict(
|
61 |
+
type="VideoAutoencoderKL",
|
62 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
63 |
+
micro_batch_size=4,
|
64 |
+
)
|
65 |
+
text_encoder = dict(
|
66 |
+
type="t5",
|
67 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
68 |
+
model_max_length=200,
|
69 |
+
shardformer=True,
|
70 |
+
)
|
71 |
+
scheduler = dict(
|
72 |
+
type="rflow",
|
73 |
+
# timestep_respacing="",
|
74 |
+
)
|
75 |
+
|
76 |
+
# Others
|
77 |
+
seed = 42
|
78 |
+
outputs = "outputs"
|
79 |
+
wandb = False
|
80 |
+
|
81 |
+
epochs = 10
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 500
|
84 |
+
load = None
|
85 |
+
|
86 |
+
batch_size = 100 # only for logging
|
87 |
+
lr = 2e-5
|
88 |
+
grad_clip = 1.0
|
configs/opensora-v1-1/train/stage1.py
CHANGED
@@ -16,15 +16,15 @@ bucket_config = { # 1s/it
|
|
16 |
"1024": {1: (0.3, 3)},
|
17 |
}
|
18 |
mask_ratios = {
|
19 |
-
"
|
20 |
-
"
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
}
|
29 |
|
30 |
# Define acceleration
|
@@ -41,7 +41,8 @@ model = dict(
|
|
41 |
from_pretrained=None,
|
42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
qk_norm=True,
|
44 |
-
|
|
|
45 |
enable_layernorm_kernel=True,
|
46 |
)
|
47 |
vae = dict(
|
|
|
16 |
"1024": {1: (0.3, 3)},
|
17 |
}
|
18 |
mask_ratios = {
|
19 |
+
"identity": 0.75,
|
20 |
+
"quarter_random": 0.025,
|
21 |
+
"quarter_head": 0.025,
|
22 |
+
"quarter_tail": 0.025,
|
23 |
+
"quarter_head_tail": 0.05,
|
24 |
+
"image_random": 0.025,
|
25 |
+
"image_head": 0.025,
|
26 |
+
"image_tail": 0.025,
|
27 |
+
"image_head_tail": 0.05,
|
28 |
}
|
29 |
|
30 |
# Define acceleration
|
|
|
41 |
from_pretrained=None,
|
42 |
input_sq_size=512, # pretrained model is trained on 512x512
|
43 |
qk_norm=True,
|
44 |
+
qk_norm_legacy=True,
|
45 |
+
enable_flash_attn=True,
|
46 |
enable_layernorm_kernel=True,
|
47 |
)
|
48 |
vae = dict(
|
configs/opensora-v1-1/train/stage2.py
CHANGED
@@ -18,15 +18,15 @@ bucket_config = { # 7s/it
|
|
18 |
"1080p": {1: (0.4, 8)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
@@ -43,7 +43,8 @@ model = dict(
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
-
|
|
|
47 |
enable_layernorm_kernel=True,
|
48 |
)
|
49 |
vae = dict(
|
|
|
18 |
"1080p": {1: (0.4, 8)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
enable_layernorm_kernel=True,
|
49 |
)
|
50 |
vae = dict(
|
configs/opensora-v1-1/train/stage3.py
CHANGED
@@ -18,15 +18,15 @@ bucket_config = { # 13s/it
|
|
18 |
"1024": {1: (0.3, 40)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
-
"
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
@@ -43,7 +43,8 @@ model = dict(
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
-
|
|
|
47 |
enable_layernorm_kernel=True,
|
48 |
)
|
49 |
vae = dict(
|
|
|
18 |
"1024": {1: (0.3, 40)},
|
19 |
}
|
20 |
mask_ratios = {
|
21 |
+
"identity": 0.75,
|
22 |
+
"quarter_random": 0.025,
|
23 |
+
"quarter_head": 0.025,
|
24 |
+
"quarter_tail": 0.025,
|
25 |
+
"quarter_head_tail": 0.05,
|
26 |
+
"image_random": 0.025,
|
27 |
+
"image_head": 0.025,
|
28 |
+
"image_tail": 0.025,
|
29 |
+
"image_head_tail": 0.05,
|
30 |
}
|
31 |
|
32 |
# Define acceleration
|
|
|
43 |
from_pretrained=None,
|
44 |
input_sq_size=512, # pretrained model is trained on 512x512
|
45 |
qk_norm=True,
|
46 |
+
qk_norm_legacy=True,
|
47 |
+
enable_flash_attn=True,
|
48 |
enable_layernorm_kernel=True,
|
49 |
)
|
50 |
vae = dict(
|
configs/opensora-v1-1/train/video.py
CHANGED
@@ -31,7 +31,8 @@ model = dict(
|
|
31 |
from_pretrained=None,
|
32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
qk_norm=True,
|
34 |
-
|
|
|
35 |
enable_layernorm_kernel=True,
|
36 |
)
|
37 |
vae = dict(
|
|
|
31 |
from_pretrained=None,
|
32 |
input_sq_size=512, # pretrained model is trained on 512x512
|
33 |
qk_norm=True,
|
34 |
+
qk_norm_legacy=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
enable_layernorm_kernel=True,
|
37 |
)
|
38 |
vae = dict(
|
configs/opensora-v1-2/inference/sample.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
resolution = "240p"
|
2 |
+
aspect_ratio = "9:16"
|
3 |
+
num_frames = 51
|
4 |
+
fps = 24
|
5 |
+
frame_interval = 1
|
6 |
+
save_fps = 24
|
7 |
+
|
8 |
+
save_dir = "./samples/samples/"
|
9 |
+
seed = 42
|
10 |
+
batch_size = 1
|
11 |
+
multi_resolution = "STDiT2"
|
12 |
+
dtype = "bf16"
|
13 |
+
condition_frame_length = 5
|
14 |
+
align = 5
|
15 |
+
|
16 |
+
model = dict(
|
17 |
+
type="STDiT3-XL/2",
|
18 |
+
from_pretrained="hpcai-tech/OpenSora-STDiT-v3",
|
19 |
+
qk_norm=True,
|
20 |
+
enable_flash_attn=True,
|
21 |
+
enable_layernorm_kernel=True,
|
22 |
+
)
|
23 |
+
vae = dict(
|
24 |
+
type="OpenSoraVAE_V1_2",
|
25 |
+
from_pretrained="hpcai-tech/OpenSora-VAE-v1.2",
|
26 |
+
micro_frame_size=17,
|
27 |
+
micro_batch_size=4,
|
28 |
+
)
|
29 |
+
text_encoder = dict(
|
30 |
+
type="t5",
|
31 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
32 |
+
model_max_length=300,
|
33 |
+
local_files_only=True,
|
34 |
+
)
|
35 |
+
scheduler = dict(
|
36 |
+
type="rflow",
|
37 |
+
use_timestep_transform=True,
|
38 |
+
num_sampling_steps=30,
|
39 |
+
cfg_scale=7.0,
|
40 |
+
)
|
41 |
+
|
42 |
+
aes = 6.5
|
43 |
+
flow = None
|
configs/opensora-v1-2/misc/bs.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# == Config 1: Webvid ==
|
8 |
+
# base: (512, 408), 12s/it
|
9 |
+
grad_checkpoint = True
|
10 |
+
base = ("512", "408")
|
11 |
+
base_step_time = 12
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {
|
14 |
+
1: (475, 0),
|
15 |
+
51: (51, 0),
|
16 |
+
102: (27, 0),
|
17 |
+
204: (13, 0),
|
18 |
+
408: (6, 0),
|
19 |
+
},
|
20 |
+
# ---
|
21 |
+
"240p": {
|
22 |
+
1: (297, 200), # 8.25
|
23 |
+
51: (20, 0),
|
24 |
+
102: (10, 0),
|
25 |
+
204: (5, 0),
|
26 |
+
408: (2, 0),
|
27 |
+
},
|
28 |
+
# ---
|
29 |
+
"512": {
|
30 |
+
1: (141, 0),
|
31 |
+
51: (8, 0),
|
32 |
+
102: (4, 0),
|
33 |
+
204: (2, 0),
|
34 |
+
408: (1, 0),
|
35 |
+
},
|
36 |
+
# ---
|
37 |
+
"480p": {
|
38 |
+
1: (89, 0),
|
39 |
+
51: (5, 0),
|
40 |
+
102: (2, 0),
|
41 |
+
204: (1, 0),
|
42 |
+
},
|
43 |
+
# ---
|
44 |
+
"1024": {
|
45 |
+
1: (36, 0),
|
46 |
+
51: (1, 0),
|
47 |
+
},
|
48 |
+
# ---
|
49 |
+
"1080p": {1: (5, 0)},
|
50 |
+
# ---
|
51 |
+
"2048": {1: (5, 0)},
|
52 |
+
}
|
53 |
+
|
54 |
+
# == Config 1 ==
|
55 |
+
# base: (512, 408), 16s/it
|
56 |
+
|
57 |
+
# Acceleration settings
|
58 |
+
num_workers = 8
|
59 |
+
num_bucket_build_workers = 16
|
60 |
+
dtype = "bf16"
|
61 |
+
plugin = "zero2"
|
62 |
+
|
63 |
+
# Model settings
|
64 |
+
model = dict(
|
65 |
+
type="STDiT3-XL/2",
|
66 |
+
from_pretrained=None,
|
67 |
+
qk_norm=True,
|
68 |
+
enable_flash_attn=True,
|
69 |
+
enable_layernorm_kernel=True,
|
70 |
+
)
|
71 |
+
vae = dict(
|
72 |
+
type="OpenSoraVAE_V1_2",
|
73 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
74 |
+
micro_frame_size=17,
|
75 |
+
micro_batch_size=4,
|
76 |
+
)
|
77 |
+
text_encoder = dict(
|
78 |
+
type="t5",
|
79 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
80 |
+
model_max_length=300,
|
81 |
+
shardformer=True,
|
82 |
+
local_files_only=True,
|
83 |
+
)
|
84 |
+
scheduler = dict(
|
85 |
+
type="rflow",
|
86 |
+
use_timestep_transform=True,
|
87 |
+
sample_method="logit-normal",
|
88 |
+
)
|
89 |
+
|
90 |
+
# Mask settings
|
91 |
+
mask_ratios = {
|
92 |
+
"random": 0.2,
|
93 |
+
"intepolate": 0.01,
|
94 |
+
"quarter_random": 0.01,
|
95 |
+
"quarter_head": 0.01,
|
96 |
+
"quarter_tail": 0.01,
|
97 |
+
"quarter_head_tail": 0.01,
|
98 |
+
"image_random": 0.05,
|
99 |
+
"image_head": 0.1,
|
100 |
+
"image_tail": 0.05,
|
101 |
+
"image_head_tail": 0.05,
|
102 |
+
}
|
103 |
+
|
104 |
+
# Log settings
|
105 |
+
seed = 42
|
106 |
+
outputs = "outputs"
|
107 |
+
wandb = False
|
108 |
+
epochs = 1000
|
109 |
+
log_every = 10
|
110 |
+
ckpt_every = 500
|
111 |
+
|
112 |
+
# optimization settings
|
113 |
+
load = None
|
114 |
+
grad_clip = 1.0
|
115 |
+
lr = 2e-4
|
116 |
+
ema_decay = 0.99
|
117 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/misc/eval_loss.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_workers = 8
|
2 |
+
dtype = "bf16"
|
3 |
+
seed = 42
|
4 |
+
num_eval_timesteps = 10
|
5 |
+
|
6 |
+
# Dataset settings
|
7 |
+
dataset = dict(
|
8 |
+
type="VariableVideoTextDataset",
|
9 |
+
transform_name="resize_crop",
|
10 |
+
)
|
11 |
+
|
12 |
+
bucket_config = {
|
13 |
+
"144p": {1: (None, 100), 51: (None, 30), 102: (None, 20), 204: (None, 8), 408: (None, 4)},
|
14 |
+
# ---
|
15 |
+
"240p": {1: (None, 100), 51: (None, 24), 102: (None, 12), 204: (None, 4), 408: (None, 2)},
|
16 |
+
# ---
|
17 |
+
"360p": {1: (None, 60), 51: (None, 12), 102: (None, 6), 204: (None, 2), 408: (None, 1)},
|
18 |
+
# ---
|
19 |
+
"480p": {1: (None, 40), 51: (None, 6), 102: (None, 3), 204: (None, 1)},
|
20 |
+
# ---
|
21 |
+
"720p": {1: (None, 20), 51: (None, 2), 102: (None, 1)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (None, 10)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (None, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
# Model settings
|
29 |
+
model = dict(
|
30 |
+
type="STDiT3-XL/2",
|
31 |
+
from_pretrained=None,
|
32 |
+
qk_norm=True,
|
33 |
+
enable_flash_attn=True,
|
34 |
+
enable_layernorm_kernel=True,
|
35 |
+
)
|
36 |
+
vae = dict(
|
37 |
+
type="OpenSoraVAE_V1_2",
|
38 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
39 |
+
micro_frame_size=17,
|
40 |
+
micro_batch_size=4,
|
41 |
+
local_files_only=True,
|
42 |
+
)
|
43 |
+
text_encoder = dict(
|
44 |
+
type="t5",
|
45 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
46 |
+
model_max_length=300,
|
47 |
+
local_files_only=True,
|
48 |
+
)
|
49 |
+
scheduler = dict(type="rflow")
|
configs/opensora-v1-2/misc/extract.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
15 |
+
"512": {1: (0.1, 141)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.1, 89)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.05, 36)},
|
20 |
+
"1024": {1: (0.05, 36)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.1, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
# Acceleration settings
|
28 |
+
num_workers = 8
|
29 |
+
num_bucket_build_workers = 16
|
30 |
+
dtype = "bf16"
|
31 |
+
seed = 42
|
32 |
+
outputs = "outputs"
|
33 |
+
wandb = False
|
34 |
+
|
35 |
+
|
36 |
+
# Model settings
|
37 |
+
model = dict(
|
38 |
+
type="STDiT3-XL/2",
|
39 |
+
from_pretrained="/mnt/nfs-206/zangwei/opensora/outputs/1091-STDiT3-XL-2/epoch0-global_step8500",
|
40 |
+
qk_norm=True,
|
41 |
+
enable_flash_attn=True,
|
42 |
+
enable_layernorm_kernel=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=32,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
# feature extraction settings
|
59 |
+
save_text_features = True
|
60 |
+
save_compressed_text_features = True
|
61 |
+
bin_size = 250 # 1GB, 4195 bins
|
62 |
+
log_time = False
|
configs/opensora-v1-2/misc/feat.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
dummy_text_feature=True,
|
6 |
+
)
|
7 |
+
|
8 |
+
# webvid
|
9 |
+
bucket_config = { # 12s/it
|
10 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
11 |
+
# ---
|
12 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
13 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
14 |
+
# ---
|
15 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
16 |
+
"512": {1: (0.1, 141)},
|
17 |
+
# ---
|
18 |
+
"480p": {1: (0.1, 89)},
|
19 |
+
# ---
|
20 |
+
"720p": {1: (0.05, 36)},
|
21 |
+
"1024": {1: (0.05, 36)},
|
22 |
+
# ---
|
23 |
+
"1080p": {1: (0.1, 5)},
|
24 |
+
# ---
|
25 |
+
"2048": {1: (0.1, 5)},
|
26 |
+
}
|
27 |
+
|
28 |
+
grad_checkpoint = True
|
29 |
+
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Acceleration settings
|
33 |
+
num_workers = 0
|
34 |
+
num_bucket_build_workers = 16
|
35 |
+
dtype = "bf16"
|
36 |
+
plugin = "zero2"
|
37 |
+
|
38 |
+
# Model settings
|
39 |
+
model = dict(
|
40 |
+
type="STDiT3-XL/2",
|
41 |
+
from_pretrained=None,
|
42 |
+
qk_norm=True,
|
43 |
+
enable_flash_attn=True,
|
44 |
+
enable_layernorm_kernel=True,
|
45 |
+
freeze_y_embedder=True,
|
46 |
+
skip_y_embedder=True,
|
47 |
+
)
|
48 |
+
vae = dict(
|
49 |
+
type="OpenSoraVAE_V1_2",
|
50 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
51 |
+
micro_frame_size=17,
|
52 |
+
micro_batch_size=4,
|
53 |
+
)
|
54 |
+
text_encoder = dict(
|
55 |
+
type="t5",
|
56 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
57 |
+
model_max_length=300,
|
58 |
+
shardformer=True,
|
59 |
+
local_files_only=True,
|
60 |
+
)
|
61 |
+
scheduler = dict(
|
62 |
+
type="rflow",
|
63 |
+
use_timestep_transform=True,
|
64 |
+
sample_method="logit-normal",
|
65 |
+
)
|
66 |
+
|
67 |
+
# Mask settings
|
68 |
+
mask_ratios = {
|
69 |
+
"random": 0.2,
|
70 |
+
"intepolate": 0.01,
|
71 |
+
"quarter_random": 0.01,
|
72 |
+
"quarter_head": 0.01,
|
73 |
+
"quarter_tail": 0.01,
|
74 |
+
"quarter_head_tail": 0.01,
|
75 |
+
"image_random": 0.05,
|
76 |
+
"image_head": 0.1,
|
77 |
+
"image_tail": 0.05,
|
78 |
+
"image_head_tail": 0.05,
|
79 |
+
}
|
80 |
+
|
81 |
+
# Log settings
|
82 |
+
seed = 42
|
83 |
+
outputs = "outputs"
|
84 |
+
wandb = False
|
85 |
+
epochs = 1000
|
86 |
+
log_every = 10
|
87 |
+
ckpt_every = 1
|
88 |
+
|
89 |
+
# optimization settings
|
90 |
+
load = None
|
91 |
+
grad_clip = 1.0
|
92 |
+
lr = 2e-4
|
93 |
+
ema_decay = 0.99
|
94 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/adapt.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
bucket_config = { # 2s/it
|
7 |
+
"144p": {1: (0.5, 48), 34: (1.0, 2), 51: (1.0, 4), 102: (1.0, 2), 204: (1.0, 1)},
|
8 |
+
# ---
|
9 |
+
"256": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
10 |
+
"240p": {1: (0.6, 20), 34: (0.5, 2), 51: (0.5, 1), 68: (0.5, 1), 136: (0.0, None)},
|
11 |
+
# ---
|
12 |
+
"360p": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
13 |
+
"512": {1: (0.5, 8), 34: (0.2, 1), 102: (0.0, None)},
|
14 |
+
# ---
|
15 |
+
"480p": {1: (0.2, 4), 17: (0.3, 1), 68: (0.0, None)},
|
16 |
+
# ---
|
17 |
+
"720p": {1: (0.1, 2)},
|
18 |
+
"1024": {1: (0.1, 2)},
|
19 |
+
# ---
|
20 |
+
"1080p": {1: (0.1, 1)},
|
21 |
+
}
|
22 |
+
grad_checkpoint = False
|
23 |
+
|
24 |
+
# Acceleration settings
|
25 |
+
num_workers = 8
|
26 |
+
num_bucket_build_workers = 16
|
27 |
+
dtype = "bf16"
|
28 |
+
plugin = "zero2"
|
29 |
+
|
30 |
+
# Model settings
|
31 |
+
model = dict(
|
32 |
+
type="STDiT3-XL/2",
|
33 |
+
from_pretrained=None,
|
34 |
+
qk_norm=True,
|
35 |
+
enable_flash_attn=True,
|
36 |
+
enable_layernorm_kernel=True,
|
37 |
+
)
|
38 |
+
vae = dict(
|
39 |
+
type="OpenSoraVAE_V1_2",
|
40 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
41 |
+
micro_frame_size=17,
|
42 |
+
micro_batch_size=4,
|
43 |
+
)
|
44 |
+
text_encoder = dict(
|
45 |
+
type="t5",
|
46 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
47 |
+
model_max_length=300,
|
48 |
+
shardformer=True,
|
49 |
+
local_files_only=True,
|
50 |
+
)
|
51 |
+
scheduler = dict(
|
52 |
+
type="rflow",
|
53 |
+
use_timestep_transform=True,
|
54 |
+
sample_method="logit-normal",
|
55 |
+
)
|
56 |
+
|
57 |
+
# Mask settings
|
58 |
+
mask_ratios = {
|
59 |
+
"random": 0.2,
|
60 |
+
"intepolate": 0.01,
|
61 |
+
"quarter_random": 0.01,
|
62 |
+
"quarter_head": 0.01,
|
63 |
+
"quarter_tail": 0.01,
|
64 |
+
"quarter_head_tail": 0.01,
|
65 |
+
"image_random": 0.05,
|
66 |
+
"image_head": 0.1,
|
67 |
+
"image_tail": 0.05,
|
68 |
+
"image_head_tail": 0.05,
|
69 |
+
}
|
70 |
+
|
71 |
+
# Log settings
|
72 |
+
seed = 42
|
73 |
+
outputs = "outputs"
|
74 |
+
wandb = False
|
75 |
+
epochs = 1000
|
76 |
+
log_every = 10
|
77 |
+
ckpt_every = 500
|
78 |
+
|
79 |
+
# optimization settings
|
80 |
+
load = None
|
81 |
+
grad_clip = 1.0
|
82 |
+
lr = 1e-4
|
83 |
+
ema_decay = 0.99
|
84 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage1.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# backup
|
8 |
+
# bucket_config = { # 20s/it
|
9 |
+
# "144p": {1: (1.0, 100), 51: (1.0, 30), 102: (1.0, 20), 204: (1.0, 8), 408: (1.0, 4)},
|
10 |
+
# # ---
|
11 |
+
# "256": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
12 |
+
# "240p": {1: (0.5, 100), 51: (0.3, 24), 102: (0.3, 12), 204: (0.3, 4), 408: (0.3, 2)},
|
13 |
+
# # ---
|
14 |
+
# "360p": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
15 |
+
# "512": {1: (0.5, 60), 51: (0.3, 12), 102: (0.3, 6), 204: (0.3, 2), 408: (0.3, 1)},
|
16 |
+
# # ---
|
17 |
+
# "480p": {1: (0.5, 40), 51: (0.3, 6), 102: (0.3, 3), 204: (0.3, 1), 408: (0.0, None)},
|
18 |
+
# # ---
|
19 |
+
# "720p": {1: (0.2, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
20 |
+
# "1024": {1: (0.1, 20), 51: (0.3, 2), 102: (0.3, 1), 204: (0.0, None)},
|
21 |
+
# # ---
|
22 |
+
# "1080p": {1: (0.1, 10)},
|
23 |
+
# # ---
|
24 |
+
# "2048": {1: (0.1, 5)},
|
25 |
+
# }
|
26 |
+
|
27 |
+
# webvid
|
28 |
+
bucket_config = { # 12s/it
|
29 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
30 |
+
# ---
|
31 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 0.1), 5), 408: ((0.5, 0.1), 2)},
|
32 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 0.1), 5), 408: ((0.4, 0.1), 2)},
|
33 |
+
# ---
|
34 |
+
"360p": {1: (0.2, 141), 51: (0.15, 8), 102: ((0.15, 0.33), 4), 204: ((0.15, 0.1), 2), 408: ((0.15, 0.1), 1)},
|
35 |
+
"512": {1: (0.1, 141)},
|
36 |
+
# ---
|
37 |
+
"480p": {1: (0.1, 89)},
|
38 |
+
# ---
|
39 |
+
"720p": {1: (0.05, 36)},
|
40 |
+
"1024": {1: (0.05, 36)},
|
41 |
+
# ---
|
42 |
+
"1080p": {1: (0.1, 5)},
|
43 |
+
# ---
|
44 |
+
"2048": {1: (0.1, 5)},
|
45 |
+
}
|
46 |
+
|
47 |
+
grad_checkpoint = True
|
48 |
+
|
49 |
+
# Acceleration settings
|
50 |
+
num_workers = 8
|
51 |
+
num_bucket_build_workers = 16
|
52 |
+
dtype = "bf16"
|
53 |
+
plugin = "zero2"
|
54 |
+
|
55 |
+
# Model settings
|
56 |
+
model = dict(
|
57 |
+
type="STDiT3-XL/2",
|
58 |
+
from_pretrained=None,
|
59 |
+
qk_norm=True,
|
60 |
+
enable_flash_attn=True,
|
61 |
+
enable_layernorm_kernel=True,
|
62 |
+
freeze_y_embedder=True,
|
63 |
+
)
|
64 |
+
vae = dict(
|
65 |
+
type="OpenSoraVAE_V1_2",
|
66 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
67 |
+
micro_frame_size=17,
|
68 |
+
micro_batch_size=4,
|
69 |
+
)
|
70 |
+
text_encoder = dict(
|
71 |
+
type="t5",
|
72 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
73 |
+
model_max_length=300,
|
74 |
+
shardformer=True,
|
75 |
+
local_files_only=True,
|
76 |
+
)
|
77 |
+
scheduler = dict(
|
78 |
+
type="rflow",
|
79 |
+
use_timestep_transform=True,
|
80 |
+
sample_method="logit-normal",
|
81 |
+
)
|
82 |
+
|
83 |
+
# Mask settings
|
84 |
+
mask_ratios = {
|
85 |
+
"random": 0.05,
|
86 |
+
"intepolate": 0.005,
|
87 |
+
"quarter_random": 0.005,
|
88 |
+
"quarter_head": 0.005,
|
89 |
+
"quarter_tail": 0.005,
|
90 |
+
"quarter_head_tail": 0.005,
|
91 |
+
"image_random": 0.025,
|
92 |
+
"image_head": 0.05,
|
93 |
+
"image_tail": 0.025,
|
94 |
+
"image_head_tail": 0.025,
|
95 |
+
}
|
96 |
+
|
97 |
+
# Log settings
|
98 |
+
seed = 42
|
99 |
+
outputs = "outputs"
|
100 |
+
wandb = False
|
101 |
+
epochs = 1000
|
102 |
+
log_every = 10
|
103 |
+
ckpt_every = 200
|
104 |
+
|
105 |
+
# optimization settings
|
106 |
+
load = None
|
107 |
+
grad_clip = 1.0
|
108 |
+
lr = 1e-4
|
109 |
+
ema_decay = 0.99
|
110 |
+
adam_eps = 1e-15
|
111 |
+
warmup_steps = 1000
|
configs/opensora-v1-2/train/stage1_feat.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(type="BatchFeatureDataset")
|
3 |
+
grad_checkpoint = True
|
4 |
+
num_workers = 4
|
5 |
+
|
6 |
+
# Acceleration settings
|
7 |
+
dtype = "bf16"
|
8 |
+
plugin = "zero2"
|
9 |
+
|
10 |
+
# Model settings
|
11 |
+
model = dict(
|
12 |
+
type="STDiT3-XL/2",
|
13 |
+
from_pretrained=None,
|
14 |
+
qk_norm=True,
|
15 |
+
enable_flash_attn=True,
|
16 |
+
enable_layernorm_kernel=True,
|
17 |
+
freeze_y_embedder=True,
|
18 |
+
skip_y_embedder=True,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="rflow",
|
22 |
+
use_timestep_transform=True,
|
23 |
+
sample_method="logit-normal",
|
24 |
+
)
|
25 |
+
|
26 |
+
vae_out_channels = 4
|
27 |
+
model_max_length = 300
|
28 |
+
text_encoder_output_dim = 4096
|
29 |
+
load_video_features = True
|
30 |
+
load_text_features = True
|
31 |
+
|
32 |
+
# Mask settings
|
33 |
+
mask_ratios = {
|
34 |
+
"random": 0.2,
|
35 |
+
"intepolate": 0.01,
|
36 |
+
"quarter_random": 0.01,
|
37 |
+
"quarter_head": 0.01,
|
38 |
+
"quarter_tail": 0.01,
|
39 |
+
"quarter_head_tail": 0.01,
|
40 |
+
"image_random": 0.05,
|
41 |
+
"image_head": 0.1,
|
42 |
+
"image_tail": 0.05,
|
43 |
+
"image_head_tail": 0.05,
|
44 |
+
}
|
45 |
+
|
46 |
+
# Log settings
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs"
|
49 |
+
wandb = False
|
50 |
+
epochs = 1000
|
51 |
+
log_every = 10
|
52 |
+
ckpt_every = 500
|
53 |
+
|
54 |
+
# optimization settings
|
55 |
+
load = None
|
56 |
+
grad_clip = 1.0
|
57 |
+
lr = 2e-4
|
58 |
+
ema_decay = 0.99
|
59 |
+
adam_eps = 1e-15
|
configs/opensora-v1-2/train/stage2.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 12s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: ((1.0, 0.33), 27), 204: ((1.0, 0.1), 13), 408: ((1.0, 0.1), 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (0.4, 297), 51: (0.5, 20), 102: ((0.5, 0.33), 10), 204: ((0.5, 1.0), 5), 408: ((0.5, 1.0), 2)},
|
12 |
+
"240p": {1: (0.3, 297), 51: (0.4, 20), 102: ((0.4, 0.33), 10), 204: ((0.4, 1.0), 5), 408: ((0.4, 1.0), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (0.5, 141), 51: (0.15, 8), 102: ((0.3, 0.5), 4), 204: ((0.3, 1.0), 2), 408: ((0.5, 0.5), 1)},
|
15 |
+
"512": {1: (0.4, 141), 51: (0.15, 8), 102: ((0.2, 0.4), 4), 204: ((0.2, 1.0), 2), 408: ((0.4, 0.5), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (0.5, 89), 51: (0.2, 5), 102: (0.2, 2), 204: (0.1, 1)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.1, 36), 51: (0.03, 1)},
|
20 |
+
"1024": {1: (0.1, 36), 51: (0.02, 1)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.01, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.01, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
mask_ratios = {
|
65 |
+
"random": 0.05,
|
66 |
+
"intepolate": 0.005,
|
67 |
+
"quarter_random": 0.005,
|
68 |
+
"quarter_head": 0.005,
|
69 |
+
"quarter_tail": 0.005,
|
70 |
+
"quarter_head_tail": 0.005,
|
71 |
+
"image_random": 0.025,
|
72 |
+
"image_head": 0.05,
|
73 |
+
"image_tail": 0.025,
|
74 |
+
"image_head_tail": 0.025,
|
75 |
+
}
|
76 |
+
|
77 |
+
# Log settings
|
78 |
+
seed = 42
|
79 |
+
outputs = "outputs"
|
80 |
+
wandb = False
|
81 |
+
epochs = 1000
|
82 |
+
log_every = 10
|
83 |
+
ckpt_every = 200
|
84 |
+
|
85 |
+
# optimization settings
|
86 |
+
load = None
|
87 |
+
grad_clip = 1.0
|
88 |
+
lr = 1e-4
|
89 |
+
ema_decay = 0.99
|
90 |
+
adam_eps = 1e-15
|
91 |
+
|
configs/opensora-v1-2/train/stage3.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Dataset settings
|
2 |
+
dataset = dict(
|
3 |
+
type="VariableVideoTextDataset",
|
4 |
+
transform_name="resize_crop",
|
5 |
+
)
|
6 |
+
|
7 |
+
# webvid
|
8 |
+
bucket_config = { # 20s/it
|
9 |
+
"144p": {1: (1.0, 475), 51: (1.0, 51), 102: (1.0, 27), 204: (1.0, 13), 408: (1.0, 6)},
|
10 |
+
# ---
|
11 |
+
"256": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.5), 2)},
|
12 |
+
"240p": {1: (1.0, 297), 51: (0.5, 20), 102: (0.5, 10), 204: (0.5, 5), 408: ((0.5, 0.4), 2)},
|
13 |
+
# ---
|
14 |
+
"360p": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.3), 1)},
|
15 |
+
"512": {1: (1.0, 141), 51: (0.5, 8), 102: (0.5, 4), 204: (0.5, 2), 408: ((0.5, 0.2), 1)},
|
16 |
+
# ---
|
17 |
+
"480p": {1: (1.0, 89), 51: (0.5, 5), 102: (0.5, 3), 204: ((0.5, 0.5), 1), 408: (0.0, None)},
|
18 |
+
# ---
|
19 |
+
"720p": {1: (0.3, 36), 51: (0.2, 2), 102: (0.1, 1), 204: (0.0, None)},
|
20 |
+
"1024": {1: (0.3, 36), 51: (0.1, 2), 102: (0.1, 1), 204: (0.0, None)},
|
21 |
+
# ---
|
22 |
+
"1080p": {1: (0.1, 5)},
|
23 |
+
# ---
|
24 |
+
"2048": {1: (0.05, 5)},
|
25 |
+
}
|
26 |
+
|
27 |
+
grad_checkpoint = True
|
28 |
+
|
29 |
+
# Acceleration settings
|
30 |
+
num_workers = 8
|
31 |
+
num_bucket_build_workers = 16
|
32 |
+
dtype = "bf16"
|
33 |
+
plugin = "zero2"
|
34 |
+
|
35 |
+
# Model settings
|
36 |
+
model = dict(
|
37 |
+
type="STDiT3-XL/2",
|
38 |
+
from_pretrained=None,
|
39 |
+
qk_norm=True,
|
40 |
+
enable_flash_attn=True,
|
41 |
+
enable_layernorm_kernel=True,
|
42 |
+
freeze_y_embedder=True,
|
43 |
+
)
|
44 |
+
vae = dict(
|
45 |
+
type="OpenSoraVAE_V1_2",
|
46 |
+
from_pretrained="/mnt/jfs/sora_checkpoints/vae-pipeline",
|
47 |
+
micro_frame_size=17,
|
48 |
+
micro_batch_size=4,
|
49 |
+
)
|
50 |
+
text_encoder = dict(
|
51 |
+
type="t5",
|
52 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
53 |
+
model_max_length=300,
|
54 |
+
shardformer=True,
|
55 |
+
local_files_only=True,
|
56 |
+
)
|
57 |
+
scheduler = dict(
|
58 |
+
type="rflow",
|
59 |
+
use_timestep_transform=True,
|
60 |
+
sample_method="logit-normal",
|
61 |
+
)
|
62 |
+
|
63 |
+
# Mask settings
|
64 |
+
# 25%
|
65 |
+
mask_ratios = {
|
66 |
+
"random": 0.01,
|
67 |
+
"intepolate": 0.002,
|
68 |
+
"quarter_random": 0.002,
|
69 |
+
"quarter_head": 0.002,
|
70 |
+
"quarter_tail": 0.002,
|
71 |
+
"quarter_head_tail": 0.002,
|
72 |
+
"image_random": 0.0,
|
73 |
+
"image_head": 0.22,
|
74 |
+
"image_tail": 0.005,
|
75 |
+
"image_head_tail": 0.005,
|
76 |
+
}
|
77 |
+
|
78 |
+
# Log settings
|
79 |
+
seed = 42
|
80 |
+
outputs = "outputs"
|
81 |
+
wandb = False
|
82 |
+
epochs = 1000
|
83 |
+
log_every = 10
|
84 |
+
ckpt_every = 200
|
85 |
+
|
86 |
+
# optimization settings
|
87 |
+
load = None
|
88 |
+
grad_clip = 1.0
|
89 |
+
lr = 1e-4
|
90 |
+
ema_decay = 0.99
|
91 |
+
adam_eps = 1e-15
|
92 |
+
warmup_steps = 1000
|
configs/opensora/inference/16x256x256.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=0.5,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/inference/16x512x512-rflow.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="rflow",
|
26 |
+
num_sampling_steps=10,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "bf16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 2
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/inference/16x512x512.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=1.0,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/inference/64x512x512.py
CHANGED
@@ -7,7 +7,7 @@ model = dict(
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
-
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
|
|
7 |
type="STDiT-XL/2",
|
8 |
space_scale=1.0,
|
9 |
time_scale=2 / 3,
|
10 |
+
enable_flash_attn=True,
|
11 |
enable_layernorm_kernel=True,
|
12 |
from_pretrained="PRETRAINED_MODEL",
|
13 |
)
|
configs/opensora/train/16x256x256-mask.py
CHANGED
@@ -20,12 +20,12 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
-
"
|
28 |
-
"
|
29 |
"mask_head": 0.05,
|
30 |
"mask_tail": 0.05,
|
31 |
"mask_head_tail": 0.05,
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
+
"identity": 0.7,
|
28 |
+
"random": 0.15,
|
29 |
"mask_head": 0.05,
|
30 |
"mask_tail": 0.05,
|
31 |
"mask_head_tail": 0.05,
|
configs/opensora/train/16x256x256-spee-rflow.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=16,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(256, 256),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
# from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
# from_pretrained = "/home/zhaowangbo/wangbo/PixArt-alpha/pretrained_models/OpenSora-v1-HQ-16x512x512.pth",
|
24 |
+
# from_pretrained = "OpenSora-v1-HQ-16x512x512.pth",
|
25 |
+
from_pretrained="PRETRAINED_MODEL",
|
26 |
+
enable_flash_attn=True,
|
27 |
+
enable_layernorm_kernel=True,
|
28 |
+
)
|
29 |
+
# mask_ratios = [0.5, 0.29, 0.07, 0.07, 0.07]
|
30 |
+
# mask_ratios = {
|
31 |
+
# "identity": 0.9,
|
32 |
+
# "random": 0.06,
|
33 |
+
# "mask_head": 0.01,
|
34 |
+
# "mask_tail": 0.01,
|
35 |
+
# "mask_head_tail": 0.02,
|
36 |
+
# }
|
37 |
+
vae = dict(
|
38 |
+
type="VideoAutoencoderKL",
|
39 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
40 |
+
)
|
41 |
+
text_encoder = dict(
|
42 |
+
type="t5",
|
43 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
44 |
+
model_max_length=120,
|
45 |
+
shardformer=True,
|
46 |
+
)
|
47 |
+
scheduler = dict(
|
48 |
+
type="rflow",
|
49 |
+
# timestep_respacing="",
|
50 |
+
)
|
51 |
+
|
52 |
+
# Others
|
53 |
+
seed = 42
|
54 |
+
outputs = "outputs"
|
55 |
+
wandb = True
|
56 |
+
|
57 |
+
epochs = 1
|
58 |
+
log_every = 10
|
59 |
+
ckpt_every = 1000
|
60 |
+
load = None
|
61 |
+
|
62 |
+
batch_size = 16
|
63 |
+
lr = 2e-5
|
64 |
+
grad_clip = 1.0
|
configs/opensora/train/16x256x256-spee.py
CHANGED
@@ -20,12 +20,12 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
-
"
|
28 |
-
"
|
29 |
"mask_head": 0.07,
|
30 |
"mask_tail": 0.07,
|
31 |
"mask_head_tail": 0.07,
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
mask_ratios = {
|
27 |
+
"identity": 0.5,
|
28 |
+
"random": 0.29,
|
29 |
"mask_head": 0.07,
|
30 |
"mask_tail": 0.07,
|
31 |
"mask_head_tail": 0.07,
|
configs/opensora/train/16x256x256.py
CHANGED
@@ -8,7 +8,7 @@ dataset = dict(
|
|
8 |
)
|
9 |
|
10 |
# Define acceleration
|
11 |
-
num_workers =
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
8 |
)
|
9 |
|
10 |
# Define acceleration
|
11 |
+
num_workers = 0
|
12 |
dtype = "bf16"
|
13 |
grad_checkpoint = True
|
14 |
plugin = "zero2"
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/opensora/train/16x512x512.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/opensora/train/360x512x512.py
CHANGED
@@ -26,7 +26,7 @@ model = dict(
|
|
26 |
space_scale=1.0,
|
27 |
time_scale=2 / 3,
|
28 |
from_pretrained=None,
|
29 |
-
|
30 |
enable_layernorm_kernel=True,
|
31 |
enable_sequence_parallelism=True, # enable sq here
|
32 |
)
|
|
|
26 |
space_scale=1.0,
|
27 |
time_scale=2 / 3,
|
28 |
from_pretrained=None,
|
29 |
+
enable_flash_attn=True,
|
30 |
enable_layernorm_kernel=True,
|
31 |
enable_sequence_parallelism=True, # enable sq here
|
32 |
)
|
configs/opensora/train/64x512x512-sp.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
enable_sequence_parallelism=True, # enable sq here
|
26 |
)
|
configs/opensora/train/64x512x512.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=1.0,
|
21 |
time_scale=2 / 3,
|
22 |
from_pretrained=None,
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/pixart/inference/1x20481B.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-1B/2",
|
8 |
+
from_pretrained="PixArt-1B-2.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x2048MS.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (2560, 1536)
|
4 |
+
# image_size = (2048, 2048)
|
5 |
+
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
from_pretrained="PixArt-Sigma-XL-2-2K-MS.pth",
|
9 |
+
space_scale=4,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
enable_flash_attn=True,
|
12 |
+
enable_layernorm_kernel=True,
|
13 |
+
base_size=2048 // 8,
|
14 |
+
)
|
15 |
+
vae = dict(
|
16 |
+
type="VideoAutoencoderKL",
|
17 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
18 |
+
subfolder="vae",
|
19 |
+
)
|
20 |
+
text_encoder = dict(
|
21 |
+
type="t5",
|
22 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
23 |
+
model_max_length=300,
|
24 |
+
)
|
25 |
+
scheduler = dict(
|
26 |
+
type="dpm-solver",
|
27 |
+
num_sampling_steps=14,
|
28 |
+
cfg_scale=4.5,
|
29 |
+
)
|
30 |
+
dtype = "bf16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2i_sigma.txt"
|
36 |
+
save_dir = "./samples/samples/"
|
configs/pixart/inference/1x512x512-rflow.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PRETRAINED_MODEL",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="rflow",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "bf16"
|
28 |
+
|
29 |
+
# prompt_path = "./assets/texts/t2i_samples.txt"
|
30 |
+
prompt = [
|
31 |
+
"Pirate ship trapped in a cosmic maelstrom nebula.",
|
32 |
+
"A small cactus with a happy face in the Sahara desert.",
|
33 |
+
"A small cactus with a sad face in the Sahara desert.",
|
34 |
+
]
|
35 |
+
|
36 |
+
# Others
|
37 |
+
batch_size = 2
|
38 |
+
seed = 42
|
39 |
+
save_dir = "./outputs/samples2/"
|
configs/pixart/train/16x256x256.py
CHANGED
@@ -20,7 +20,7 @@ model = dict(
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
-
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
|
|
20 |
space_scale=0.5,
|
21 |
time_scale=1.0,
|
22 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
enable_layernorm_kernel=True,
|
25 |
)
|
26 |
vae = dict(
|
configs/pixart/train/1x2048x2048.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path="/home/zhaowangbo/data/csv/image-v1_1_ext_noempty_rcp_clean_info.csv",
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(2048, 2048),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-1B/2",
|
20 |
+
space_scale=4.0,
|
21 |
+
no_temporal_pos_emb=True,
|
22 |
+
from_pretrained="PixArt-1B-2.pth",
|
23 |
+
enable_flash_attn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
30 |
+
subfolder="vae",
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=300,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512-rflow.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define dataset
|
2 |
+
dataset = dict(
|
3 |
+
type="VideoTextDataset",
|
4 |
+
data_path=None,
|
5 |
+
num_frames=1,
|
6 |
+
frame_interval=3,
|
7 |
+
image_size=(512, 512),
|
8 |
+
)
|
9 |
+
|
10 |
+
# Define acceleration
|
11 |
+
num_workers = 4
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
no_temporal_pos_emb=True,
|
23 |
+
# from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
from_pretrained="PRETRAINED_MODEL",
|
25 |
+
enable_flash_attn=True,
|
26 |
+
enable_layernorm_kernel=True,
|
27 |
+
)
|
28 |
+
vae = dict(
|
29 |
+
type="VideoAutoencoderKL",
|
30 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=120,
|
36 |
+
shardformer=True,
|
37 |
+
)
|
38 |
+
scheduler = dict(
|
39 |
+
type="rflow",
|
40 |
+
# timestep_respacing="",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Others
|
44 |
+
seed = 42
|
45 |
+
outputs = "outputs"
|
46 |
+
wandb = True
|
47 |
+
|
48 |
+
epochs = 2
|
49 |
+
log_every = 10
|
50 |
+
ckpt_every = 1000
|
51 |
+
load = None
|
52 |
+
|
53 |
+
batch_size = 64
|
54 |
+
lr = 2e-5
|
55 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512.py
CHANGED
@@ -21,7 +21,7 @@ model = dict(
|
|
21 |
time_scale=1.0,
|
22 |
no_temporal_pos_emb=True,
|
23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
-
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
|
|
21 |
time_scale=1.0,
|
22 |
no_temporal_pos_emb=True,
|
23 |
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
enable_flash_attn=True,
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
configs/pixart/train/64x512x512.py
CHANGED
@@ -21,7 +21,7 @@ model = dict(
|
|
21 |
space_scale=1.0,
|
22 |
time_scale=2 / 3,
|
23 |
from_pretrained=None,
|
24 |
-
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
|
|
21 |
space_scale=1.0,
|
22 |
time_scale=2 / 3,
|
23 |
from_pretrained=None,
|
24 |
+
enable_flash_attn=True,
|
25 |
enable_layernorm_kernel=True,
|
26 |
)
|
27 |
vae = dict(
|
configs/vae/inference/image.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_size = (256, 256)
|
2 |
+
num_frames = 1
|
3 |
+
|
4 |
+
dtype = "bf16"
|
5 |
+
batch_size = 1
|
6 |
+
seed = 42
|
7 |
+
save_dir = "samples/vae_video"
|
8 |
+
cal_stats = True
|
9 |
+
log_stats_every = 100
|
10 |
+
|
11 |
+
# Define dataset
|
12 |
+
dataset = dict(
|
13 |
+
type="VideoTextDataset",
|
14 |
+
data_path=None,
|
15 |
+
num_frames=num_frames,
|
16 |
+
image_size=image_size,
|
17 |
+
)
|
18 |
+
num_samples = 100
|
19 |
+
num_workers = 4
|
20 |
+
|
21 |
+
# Define model
|
22 |
+
model = dict(
|
23 |
+
type="OpenSoraVAE_V1_2",
|
24 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
25 |
+
micro_frame_size=None,
|
26 |
+
micro_batch_size=4,
|
27 |
+
cal_loss=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# loss weights
|
31 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
32 |
+
kl_loss_weight = 1e-6
|
configs/vae/inference/video.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
image_size = (256, 256)
|
2 |
+
num_frames = 17
|
3 |
+
|
4 |
+
dtype = "bf16"
|
5 |
+
batch_size = 1
|
6 |
+
seed = 42
|
7 |
+
save_dir = "samples/vae_video"
|
8 |
+
cal_stats = True
|
9 |
+
log_stats_every = 100
|
10 |
+
|
11 |
+
# Define dataset
|
12 |
+
dataset = dict(
|
13 |
+
type="VideoTextDataset",
|
14 |
+
data_path=None,
|
15 |
+
num_frames=num_frames,
|
16 |
+
image_size=image_size,
|
17 |
+
)
|
18 |
+
num_samples = 100
|
19 |
+
num_workers = 4
|
20 |
+
|
21 |
+
# Define model
|
22 |
+
model = dict(
|
23 |
+
type="OpenSoraVAE_V1_2",
|
24 |
+
from_pretrained="pretrained_models/vae-pipeline",
|
25 |
+
micro_frame_size=None,
|
26 |
+
micro_batch_size=4,
|
27 |
+
cal_loss=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# loss weights
|
31 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
32 |
+
kl_loss_weight = 1e-6
|
configs/vae/train/image.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=True,
|
23 |
+
from_pretrained=None,
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
# loss weights
|
38 |
+
perceptual_loss_weight = 0.0 # use vgg is not None and more than 0
|
39 |
+
kl_loss_weight = 1e-6
|
40 |
+
|
41 |
+
mixed_image_ratio = 0.1
|
42 |
+
use_real_rec_loss = False
|
43 |
+
use_z_rec_loss = True
|
44 |
+
use_image_identity_loss = True
|
45 |
+
|
46 |
+
# Others
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs"
|
49 |
+
wandb = False
|
50 |
+
|
51 |
+
epochs = 100
|
52 |
+
log_every = 1
|
53 |
+
ckpt_every = 1000
|
54 |
+
load = None
|
55 |
+
|
56 |
+
batch_size = 1
|
57 |
+
lr = 1e-5
|
58 |
+
grad_clip = 1.0
|
configs/vae/train/video.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 33
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=False,
|
23 |
+
from_pretrained=None,
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
# loss weights
|
38 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
39 |
+
kl_loss_weight = 1e-6
|
40 |
+
|
41 |
+
mixed_image_ratio = 0.2
|
42 |
+
use_real_rec_loss = True
|
43 |
+
use_z_rec_loss = False
|
44 |
+
use_image_identity_loss = False
|
45 |
+
|
46 |
+
# Others
|
47 |
+
seed = 42
|
48 |
+
outputs = "outputs"
|
49 |
+
wandb = False
|
50 |
+
|
51 |
+
epochs = 100
|
52 |
+
log_every = 1
|
53 |
+
ckpt_every = 1000
|
54 |
+
load = None
|
55 |
+
|
56 |
+
batch_size = 1
|
57 |
+
lr = 1e-5
|
58 |
+
grad_clip = 1.0
|
configs/vae/train/video_disc.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 17
|
2 |
+
image_size = (256, 256)
|
3 |
+
|
4 |
+
# Define dataset
|
5 |
+
dataset = dict(
|
6 |
+
type="VideoTextDataset",
|
7 |
+
data_path=None,
|
8 |
+
num_frames=num_frames,
|
9 |
+
frame_interval=1,
|
10 |
+
image_size=image_size,
|
11 |
+
)
|
12 |
+
|
13 |
+
# Define acceleration
|
14 |
+
num_workers = 16
|
15 |
+
dtype = "bf16"
|
16 |
+
grad_checkpoint = True
|
17 |
+
plugin = "zero2"
|
18 |
+
|
19 |
+
# Define model
|
20 |
+
model = dict(
|
21 |
+
type="VideoAutoencoderPipeline",
|
22 |
+
freeze_vae_2d=False,
|
23 |
+
from_pretrained=None,
|
24 |
+
cal_loss=True,
|
25 |
+
vae_2d=dict(
|
26 |
+
type="VideoAutoencoderKL",
|
27 |
+
from_pretrained="PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
|
28 |
+
subfolder="vae",
|
29 |
+
local_files_only=True,
|
30 |
+
),
|
31 |
+
vae_temporal=dict(
|
32 |
+
type="VAE_Temporal_SD",
|
33 |
+
from_pretrained=None,
|
34 |
+
),
|
35 |
+
)
|
36 |
+
|
37 |
+
discriminator = dict(
|
38 |
+
type="NLayerDiscriminator",
|
39 |
+
from_pretrained="/home/shenchenhui/opensoraplan-v1.0.0-discriminator.pt",
|
40 |
+
input_nc=3,
|
41 |
+
n_layers=3,
|
42 |
+
use_actnorm=False,
|
43 |
+
)
|
44 |
+
|
45 |
+
# discriminator hyper-parames TODO
|
46 |
+
discriminator_factor = 1
|
47 |
+
discriminator_start = -1
|
48 |
+
generator_factor = 0.5
|
49 |
+
generator_loss_type = "hinge"
|
50 |
+
discriminator_loss_type = "hinge"
|
51 |
+
lecam_loss_weight = None
|
52 |
+
gradient_penalty_loss_weight = None
|
53 |
+
|
54 |
+
# loss weights
|
55 |
+
perceptual_loss_weight = 0.1 # use vgg is not None and more than 0
|
56 |
+
kl_loss_weight = 1e-6
|
57 |
+
|
58 |
+
mixed_image_ratio = 0.2
|
59 |
+
use_real_rec_loss = True
|
60 |
+
use_z_rec_loss = False
|
61 |
+
use_image_identity_loss = False
|
62 |
+
|
63 |
+
# Others
|
64 |
+
seed = 42
|
65 |
+
outputs = "outputs"
|
66 |
+
wandb = False
|
67 |
+
|
68 |
+
epochs = 100
|
69 |
+
log_every = 1
|
70 |
+
ckpt_every = 1000
|
71 |
+
load = None
|
72 |
+
|
73 |
+
batch_size = 1
|
74 |
+
lr = 1e-5
|
75 |
+
grad_clip = 1.0
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
xformers
|
2 |
transformers
|
3 |
pandarallel
|
4 |
-
git+https://github.com/
|
|
|
1 |
xformers
|
2 |
transformers
|
3 |
pandarallel
|
4 |
+
git+https://github.com/FrankLeeeee/test-space.git
|