|
import gradio as gr |
|
from huggingface_hub import InferenceClient, HfApi |
|
from datetime import datetime |
|
import uuid |
|
import os |
|
import json |
|
|
|
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" |
|
DATASET_REPO = "frimelle/companion-chat-logs" |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
|
|
with open("system_prompt.txt", "r") as f: |
|
SYSTEM_PROMPT = f.read() |
|
|
|
client = InferenceClient(MODEL_NAME) |
|
api = HfApi() |
|
|
|
|
|
class SessionChatBot: |
|
def __init__(self): |
|
self.session_id = str(uuid.uuid4()) |
|
self.today_date = datetime.now().strftime("%Y-%m-%d") |
|
self.local_log_path = f"chatlog_{self.today_date}_{self.session_id}.jsonl" |
|
self.remote_log_path = f"sessions/{self.today_date}/{self.session_id}.jsonl" |
|
|
|
def append_to_session_log(self, user_message, assistant_message): |
|
row = { |
|
"timestamp": datetime.now().isoformat(), |
|
"user": user_message, |
|
"assistant": assistant_message, |
|
"system_prompt": SYSTEM_PROMPT, |
|
"session_id": self.session_id |
|
} |
|
with open(self.local_log_path, "a", encoding="utf-8") as f: |
|
f.write(json.dumps(row) + "\n") |
|
api.upload_file( |
|
path_or_fileobj=self.local_log_path, |
|
path_in_repo=self.remote_log_path, |
|
repo_id=DATASET_REPO, |
|
repo_type="dataset", |
|
token=HF_TOKEN |
|
) |
|
|
|
def respond(self, message, history): |
|
messages = [{"role": "system", "content": SYSTEM_PROMPT}] |
|
for user_msg, bot_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if bot_msg: |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for chunk in client.chat_completion( |
|
messages, |
|
max_tokens=512, |
|
stream=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
): |
|
token = chunk.choices[0].delta.content |
|
if token: |
|
response += token |
|
yield response |
|
|
|
|
|
self.append_to_session_log(message, response) |
|
|
|
def report_interaction(self): |
|
if not os.path.exists(self.local_log_path): |
|
return "No session log found." |
|
|
|
with open(self.local_log_path, "r", encoding="utf-8") as f: |
|
lines = f.readlines() |
|
|
|
if not lines: |
|
return "No conversation to report." |
|
|
|
|
|
last_entry = json.loads(lines[-1]) |
|
last_entry["reported"] = True |
|
lines[-1] = json.dumps(last_entry) + "\n" |
|
|
|
|
|
with open(self.local_log_path, "w", encoding="utf-8") as f: |
|
f.writelines(lines) |
|
|
|
|
|
api.upload_file( |
|
path_or_fileobj=self.local_log_path, |
|
path_in_repo=self.remote_log_path, |
|
repo_id=DATASET_REPO, |
|
repo_type="dataset", |
|
token=HF_TOKEN |
|
) |
|
return "Interaction reported successfully." |
|
|
|
|
|
chatbot_instance = SessionChatBot() |
|
|
|
def create_chatbot(): |
|
return chatbot_instance.respond |
|
|
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.ChatInterface(fn=create_chatbot(), title="BoundrAI") |
|
report_btn = gr.Button("Report Companion Interaction") |
|
status_box = gr.Textbox(label="Report Status", interactive=False) |
|
|
|
def report(): |
|
return chatbot_instance.report_interaction() |
|
|
|
report_btn.click(fn=report, outputs=status_box) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |