Spaces:
Runtime error
Runtime error
import pandas as pd | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig | |
# Load the configuration and adjust it | |
config = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3.1-8B") | |
if 'rope_scaling' in config.to_dict() and isinstance(config.rope_scaling, dict): | |
# Adjust the rope_scaling to match the expected format | |
config.rope_scaling = { | |
"type": config.rope_scaling.get('rope_type', 'llama3'), | |
"factor": config.rope_scaling.get('factor', 8.0) | |
} | |
# Load the tokenizer and model with the adjusted configuration | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B") | |
model = AutoModelForCausalLM.from_config(config) | |
# Load and preprocess the DataFrame | |
df = pd.read_csv('anomalies.csv') | |
df['Feedback'] = "" | |
df['ds'] = pd.to_datetime(df['ds']).dt.strftime('%Y-%m-%d') | |
df['real'] = df['real'].apply(lambda x: f"{x:.2f}") | |
# Convert data rows to sentences | |
def tokenize_row(row): | |
return f"On {row['ds']}, the expense in the group '{row['Group']}' was ${row['real']}." | |
df['tokenized'] = df.apply(tokenize_row, axis=1) | |
print(df) | |
# Function to generate a response based on the latest data entries | |
def answer_question_with_llama(question): | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
latest_entries = df['tokenized'].tail(10).tolist() | |
prompt = f"Based on the following data: {' '.join(latest_entries)} Question: {question} Answer:" | |
inputs = tokenizer(prompt, return_tensors='pt', padding='max_length', truncation=True, max_length=512) | |
attention_mask = inputs['attention_mask'] | |
input_ids = inputs['input_ids'] | |
generated_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_length=512, # Adjusted to match typical model capacity | |
temperature=0.7, # Adjust temperature for diversity | |
top_p=0.9, | |
no_repeat_ngram_size=2 | |
) | |
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
response_part = generated_text.split("Answer:")[1] if "Answer:" in generated_text else "No answer found." | |
final_response = response_part.split(".")[0] + "." | |
return final_response | |
# Function to add feedback | |
def add_feedback(name, feedback): | |
global df | |
if name in df['Group'].values: | |
df.loc[df['Group'] == name, 'Feedback'] = feedback | |
return "Feedback successfully added." | |
else: | |
return "Data not found in DataFrame." | |
with gr.Blocks() as demo: | |
gr.Markdown("# Data Query and Feedback System") | |
with gr.Row(): | |
with gr.Column(): | |
question_input = gr.Textbox(label="Ask a Question") | |
answer_output = gr.Textbox(label="Answer", interactive=False) | |
ask_button = gr.Button("Ask") | |
with gr.Column(): | |
name_input = gr.Textbox(label="Name for Feedback") | |
feedback_input = gr.Textbox(label="Feedback") | |
feedback_result = gr.Textbox(label="Feedback Result", interactive=False) | |
submit_button = gr.Button("Submit Feedback") | |
ask_button.click(fn=answer_question_with_llama, inputs=question_input, outputs=answer_output) | |
submit_button.click(fn=add_feedback, inputs=[name_input, feedback_input], outputs=feedback_result) | |
demo.launch() | |