Spaces:
Running
Running
Initial version
Browse files- app.py +140 -0
- packages.txt +2 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import pytesseract
|
10 |
+
|
11 |
+
import plotly.express as px
|
12 |
+
|
13 |
+
from torch.utils.data import Dataset, DataLoader, Subset
|
14 |
+
import os
|
15 |
+
import io
|
16 |
+
import pytesseract
|
17 |
+
import fitz
|
18 |
+
from typing import List
|
19 |
+
import json
|
20 |
+
|
21 |
+
import sys
|
22 |
+
from pathlib import Path
|
23 |
+
|
24 |
+
from transformers import LayoutLMv3FeatureExtractor, LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForSequenceClassification
|
25 |
+
|
26 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
|
28 |
+
TOKENIZER = "microsoft/layoutlmv3-base"
|
29 |
+
MODEL_NAME = "fsommers/layoutlmv3-autofinance-classification-us-v01"
|
30 |
+
|
31 |
+
TESS_OPTIONS = "--psm 3" # Automatic page segmentation for Tesseract
|
32 |
+
|
33 |
+
@st.cache_resource
|
34 |
+
def create_ocr_reader():
|
35 |
+
def scale_bounding_box(box: List[int], w_scale: float = 1.0, h_scale: float = 1.0):
|
36 |
+
return [
|
37 |
+
int(box[0] * w_scale),
|
38 |
+
int(box[1] * h_scale),
|
39 |
+
int(box[2] * w_scale),
|
40 |
+
int(box[3] * h_scale)
|
41 |
+
]
|
42 |
+
def ocr_page(image) -> dict:
|
43 |
+
"""
|
44 |
+
OCR a given image. Return a dictionary of words and the bounding boxes
|
45 |
+
for each word. For each word, there is a corresponding bounding box.
|
46 |
+
"""
|
47 |
+
ocr_df = pytesseract.image_to_data(image, output_type='data.frame', config=TESS_OPTIONS)
|
48 |
+
ocr_df = ocr_df.dropna().reset_index(drop=True)
|
49 |
+
float_cols = ocr_df.select_dtypes('float').columns
|
50 |
+
ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
|
51 |
+
ocr_df = ocr_df.replace(r'^\s*$', np.nan, regex=True)
|
52 |
+
ocr_df = ocr_df.dropna().reset_index(drop=True)
|
53 |
+
|
54 |
+
words = list(ocr_df.text)
|
55 |
+
words = [str(w) for w in words]
|
56 |
+
|
57 |
+
coordinates = ocr_df[['left', 'top', 'width', 'height']]
|
58 |
+
boxes = []
|
59 |
+
for i, row in coordinates.iterrows():
|
60 |
+
x, y, w, h = tuple(row)
|
61 |
+
actual_box = [x, y, x + w, y + h]
|
62 |
+
boxes.append(actual_box)
|
63 |
+
|
64 |
+
assert len(words) == len(boxes)
|
65 |
+
return {"bbox": boxes, "words": words}
|
66 |
+
|
67 |
+
def prepare_image(image):
|
68 |
+
ocr_data = ocr_page(image)
|
69 |
+
width, height = image.size
|
70 |
+
width_scale = 1000 / width
|
71 |
+
height_scale = 1000 / height
|
72 |
+
words = []
|
73 |
+
boxes = []
|
74 |
+
for w, b in zip(ocr_data["words"], ocr_data["bbox"]):
|
75 |
+
words.append(w)
|
76 |
+
boxes.append(scale_bounding_box(b, width_scale, height_scale))
|
77 |
+
|
78 |
+
assert len(words) == len(boxes)
|
79 |
+
for bo in boxes:
|
80 |
+
for z in bo:
|
81 |
+
if (z > 1000):
|
82 |
+
raise
|
83 |
+
return words, boxes
|
84 |
+
|
85 |
+
return prepare_image
|
86 |
+
|
87 |
+
@st.cache_resource
|
88 |
+
def create_model():
|
89 |
+
model = LayoutLMv3ForSequenceClassification.from_pretrained(MODEL_NAME)
|
90 |
+
return model.eval().to(DEVICE)
|
91 |
+
|
92 |
+
@st.cache_resource
|
93 |
+
def create_processor():
|
94 |
+
feature_extractor = LayoutLMv3FeatureExtractor(apply_ocr=False)
|
95 |
+
tokenizer = LayoutLMv3TokenizerFast.from_pretrained(TOKENIZER)
|
96 |
+
return LayoutLMv3Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
97 |
+
|
98 |
+
def predict(image, reader, processor: LayoutLMv3Processor, model: LayoutLMv3ForSequenceClassification):
|
99 |
+
words, boxes = reader(image)
|
100 |
+
encoding = processor(
|
101 |
+
image,
|
102 |
+
words,
|
103 |
+
boxes=boxes,
|
104 |
+
max_length=512,
|
105 |
+
padding="max_length",
|
106 |
+
truncation=True,
|
107 |
+
return_tensors="pt"
|
108 |
+
)
|
109 |
+
with torch.inference_mode():
|
110 |
+
output = model(
|
111 |
+
input_ids=encoding["input_ids"].to(DEVICE),
|
112 |
+
attention_mask=encoding["attention_mask"].to(DEVICE),
|
113 |
+
bbox=encoding["bbox"].to(DEVICE),
|
114 |
+
pixel_values=encoding["pixel_values"].to(DEVICE)
|
115 |
+
)
|
116 |
+
logits = output.logits
|
117 |
+
predicted_class = logits.argmax()
|
118 |
+
probabilities = F.softmax(logits, dim=-1).flatten().tolist()
|
119 |
+
return predicted_class.detach().item(), probabilities
|
120 |
+
|
121 |
+
reader = create_ocr_reader()
|
122 |
+
processor = create_processor()
|
123 |
+
model = create_model()
|
124 |
+
|
125 |
+
uploaded_file = st.file_uploader("Choose a JPG file", ["jpg", "png"])
|
126 |
+
if uploaded_file is not None:
|
127 |
+
bytes_data = io.BytesIO(uploaded_file.read())
|
128 |
+
image = Image.open(bytes_data)
|
129 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
130 |
+
predicted, probabilities = predict(image, reader, processor, model)
|
131 |
+
predicted_label = model.config.id2label[predicted]
|
132 |
+
st.markdown(f"Predicted Label: {predicted_label}")
|
133 |
+
|
134 |
+
df = pd.DataFrame({
|
135 |
+
"Label": list(model.config.id2label.values()),
|
136 |
+
"Probability": probabilities
|
137 |
+
})
|
138 |
+
fig = px.bar(df, x="Label", y="Probability")
|
139 |
+
st.plotly_chart(fig, use_container_width=True)
|
140 |
+
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
tesseract-ocr
|
2 |
+
tesseract-ocr-eng-best
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.2.2
|
2 |
+
huggingface-hub==0.23.0
|
3 |
+
Pillow==10.3.0
|
4 |
+
plotly-express==0.4.1
|
5 |
+
PyMuPDF==1.24.3
|
6 |
+
pytesseract==0.3.10
|
7 |
+
torch==2.2.2
|
8 |
+
transformers==4.40.2
|