Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
model_name = "Qwen/Qwen3-0.6B-Base" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def process_excel(file, prompt): | |
# Read the Excel file | |
df = pd.read_excel(file.name) | |
# Convert the DataFrame to a string representation | |
excel_content = df.to_string(index=False) | |
# Combine the prompt with the Excel content | |
full_prompt = f"{prompt}\n\nExcel Data:\n{excel_content}" | |
# Tokenize the input and generate a response | |
inputs = tokenizer(full_prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=500) | |
# Decode the output | |
result = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return result | |
# Define the Gradio interface | |
app = gr.Interface( | |
fn=process_excel, | |
inputs=[ | |
gr.File(label="Upload Excel File"), | |
gr.Textbox(label="Enter your prompt") | |
], | |
outputs=gr.Textbox(label="Result"), | |
title="Excel Processing with Qwen3", | |
description="Upload an Excel file and enter a prompt to process the data." | |
) | |
# Launch the app | |
app.launch(server_name="0.0.0.0", server_port=7860) | |