Spaces:
Running
Running
| import torch | |
| import json | |
| import gradio as gr | |
| TITLE = "Danboru Tag Similarity" | |
| DESCRIPTION = """ | |
| 与えられたダンボールタグの類似度を計算します。\n | |
| 対応するタグのリストはFilesからそれぞれのテキストファイルを参照してください。(Dartと同じです)。\n | |
| Dartを参考に、isek-ai/danbooru-tags-2023データセットでタグをシャッフルして2エポック学習しました。\n | |
| 学習後のトークン埋め込みを元に計算しています。 | |
| """ | |
| with open("id_to_token.json", "r") as f: | |
| id_to_token = json.load(f) | |
| token_to_id = {v:int(k) for k,v in id_to_token.items()} | |
| with open("popular.txt", "r") as f: | |
| populars = f.read().splitlines() | |
| with open("character.txt", "r") as f: | |
| characters = f.read().splitlines() | |
| with open("copyright.txt", "r") as f: | |
| copyrights = f.read().splitlines() | |
| with open("general.txt", "r") as f: | |
| generals = f.read().splitlines() | |
| tags = characters + copyrights + generals | |
| token_embeddings = torch.load("token_embeddings.pt") | |
| def predict(target_tag, sort_by, category, popular): | |
| if sort_by == "descending": | |
| multiplier = 1 | |
| else: | |
| multiplier = -1 | |
| target_embedding = token_embeddings[token_to_id[target_tag]].unsqueeze(0) | |
| sims = torch.cosine_similarity(target_embedding, token_embeddings, dim=1) * multiplier | |
| if category == "general": | |
| tag_list = generals | |
| elif category == "character": | |
| tag_list = characters | |
| elif category == "copyright": | |
| tag_list = copyrights | |
| else: | |
| tag_list = tags | |
| if popular=="only_popular": | |
| tag_list = list(set(tag_list) & set(populars)) | |
| return {k:sims[token_to_id[k]].item() for k in tag_list} | |
| demo = gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Textbox(label="Target tag", value="otoko no ko"), | |
| gr.Radio(choices=["descending", "ascending"], label="Sort by", value="descending"), | |
| gr.Dropdown(choices=["all", "general", "character", "copyright"], value="all", label="category"), | |
| gr.Radio(choices=["all", "only_popular"], label="Only popular tag (count>=1000)", value="all"), | |
| ], | |
| outputs=gr.Label(num_top_classes=50), | |
| title=TITLE, | |
| description=DESCRIPTION | |
| ) | |
| demo.launch() | |