Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,35 @@ import torch
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
with open("num_to_token.json", "r") as f:
|
| 6 |
num_to_token = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
token_to_num = {v:k for k,v in num_to_token.items()}
|
| 8 |
token_embeddings = torch.load("token_embeddings.pt")
|
| 9 |
|
| 10 |
tags = sorted(list(num_to_token.values()))
|
| 11 |
|
| 12 |
-
def predict(target_tag, sort_by
|
| 13 |
if sort_by == "descending":
|
| 14 |
multiplier = 1
|
| 15 |
else:
|
|
@@ -17,16 +38,28 @@ def predict(target_tag, sort_by="descend"):
|
|
| 17 |
target_embedding = token_embeddings[int(token_to_num[target_tag])].unsqueeze(0)
|
| 18 |
sims = torch.cosine_similarity(target_embedding, token_embeddings, dim=1)
|
| 19 |
results = {num_to_token[str(i)]:sims[i].item() * multiplier for i in range(len(num_to_token))}
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
demo = gr.Interface(
|
| 24 |
fn=predict,
|
| 25 |
inputs=[
|
| 26 |
gr.Textbox(label="Target tag", value="otoko no ko"),
|
| 27 |
-
gr.Radio(choices=["descending", "ascending"], label="Sort by", value="descending")
|
|
|
|
|
|
|
| 28 |
],
|
| 29 |
outputs=gr.Label(num_top_classes=50),
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
-
demo.launch()
|
|
|
|
| 2 |
import json
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
TITLE = "Danboru Tag Similarity"
|
| 6 |
+
DESCRIPTION = """
|
| 7 |
+
与えられたダンボールタグの類似度を計算します。\n
|
| 8 |
+
対応するタグのリストはFilesからそれぞれのテキストファイルを参照してください。(Dartと同じです)。\n
|
| 9 |
+
Dartを参考に、isek-ai/danbooru-tags-2023データセットでタグをシャッフルして2エポック学習しました。\n
|
| 10 |
+
学習後のトークン埋め込みを元に計算しています。
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
with open("num_to_token.json", "r") as f:
|
| 14 |
num_to_token = json.load(f)
|
| 15 |
+
with open("popular.txt", "r") as f:
|
| 16 |
+
populars = f.read().splitlines()
|
| 17 |
+
with open("character.txt", "r") as f:
|
| 18 |
+
characters = f.read().splitlines()
|
| 19 |
+
characters_populars = list(set(characters) & set(populars))
|
| 20 |
+
with open("copyright.txt", "r") as f:
|
| 21 |
+
copyrights = f.read().splitlines()
|
| 22 |
+
copyrights_populars = list(set(copyrights) & set(populars))
|
| 23 |
+
with open("general.txt", "r") as f:
|
| 24 |
+
generals = f.read().splitlines()
|
| 25 |
+
generals_populars = list(set(generals) & set(populars))
|
| 26 |
+
|
| 27 |
+
|
| 28 |
token_to_num = {v:k for k,v in num_to_token.items()}
|
| 29 |
token_embeddings = torch.load("token_embeddings.pt")
|
| 30 |
|
| 31 |
tags = sorted(list(num_to_token.values()))
|
| 32 |
|
| 33 |
+
def predict(target_tag, sort_by, category, popular):
|
| 34 |
if sort_by == "descending":
|
| 35 |
multiplier = 1
|
| 36 |
else:
|
|
|
|
| 38 |
target_embedding = token_embeddings[int(token_to_num[target_tag])].unsqueeze(0)
|
| 39 |
sims = torch.cosine_similarity(target_embedding, token_embeddings, dim=1)
|
| 40 |
results = {num_to_token[str(i)]:sims[i].item() * multiplier for i in range(len(num_to_token))}
|
| 41 |
+
if category == "general":
|
| 42 |
+
tag_list = generals if popular == "all" else generals_populars
|
| 43 |
+
elif category == "character":
|
| 44 |
+
tag_list = characters if popular == "all" else characters_populars
|
| 45 |
+
elif category == "copyright":
|
| 46 |
+
tag_list = copyrights if popular == "all" else copyrights_populars
|
| 47 |
+
else:
|
| 48 |
+
tag_list = results.keys() if popular == "all" else populars
|
| 49 |
+
|
| 50 |
+
return {k:results[k] for k in tag_list}
|
| 51 |
|
| 52 |
demo = gr.Interface(
|
| 53 |
fn=predict,
|
| 54 |
inputs=[
|
| 55 |
gr.Textbox(label="Target tag", value="otoko no ko"),
|
| 56 |
+
gr.Radio(choices=["descending", "ascending"], label="Sort by", value="descending"),
|
| 57 |
+
gr.Dropdown(choices=["all", "general", "character", "copyright"], value="all", label="category"),
|
| 58 |
+
gr.Radio(choices=["all", "only_popular"], label="Only popular tag (count>=1000)", value="all"),
|
| 59 |
],
|
| 60 |
outputs=gr.Label(num_top_classes=50),
|
| 61 |
+
title=TITLE,
|
| 62 |
+
description=DESCRIPTION
|
| 63 |
)
|
| 64 |
|
| 65 |
+
demo.launch()
|