import json import os from datetime import date, datetime from pathlib import Path import plotly.graph_objects as go from dotenv import load_dotenv from fastapi import Depends, FastAPI, Request from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse, Response from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from mistralai.client import ChatMessage, MistralClient from pydantic import BaseModel from weather import get_weather # code that gives the date of today today = date.today() today = today.strftime("%Y-%m-%d") # Hugging face space secret retrieval: FIXME def create_env_file(): import os secrets = ['MISTRAL_API_KEY', 'AGRO_API_KEY', 'OPENCAGE_API_KEY'] for secret in secrets: secret_value = os.environ[secret] if secret_value is None: print(f"Please set the environment variable {secret}") else: with open('.env', 'a') as f: f.write(f"{secret}={secret_value}\n") # Hugging face space secret retrieval: FIXME production = False if production: create_env_file() # Load environment variables load_dotenv() #api_key='Yb2kAF0DR4Mva5AEmoYFV3kYRAKdXB7i' #client = MistralClient(api_key=api_key) model = 'mistral-small' title = "Gaia Mistral Chat Demo" description = "Example of simple chatbot with Gradio and Mistral AI via its API" placeholder = "Posez moi une question sur l'agriculture" examples = ["Comment fait on pour produire du maïs ?", "Rédige moi une lettre pour faire un stage dans une exploitation agricole", "Comment reprendre une exploitation agricole ?"] def create_prompt_system(): prompt = "Ton rôle: Assistant agricole\n\n" prompt += "Ton objectif: Aider les agriculteurs dans leur recherche d'information. Tu peux répondre à des questions sur l'agriculture, donner des conseils, ou aider à rédiger des documents administratifs.\n\n" prompt += "Ton public: Agriculteurs, étudiants en agriculture, personnes en reconversion professionnelle, ou toute personne ayant des questions sur l'agriculture.\n\n" prompt += "Ton style: Tu es professionnel, bienveillant, et tu as une connaissance approfondie de l'agriculture. Tu réponds uniquement en français et de manière semi-concise. Tu es capable de répondre à des questions techniques, mais tu sais aussi t'adapter à des personnes qui ne connaissent pas bien le domaine.\n\n" prompt += "Tu disposes du contexte suivant pour répondre aux questions:\n\n" # load all the json files in the root for file in Path('.').glob('*.json'): with open(file, 'r') as f: prompt += f"Contexte: {file.stem}\n\n" # convert the json to a string using the json module file_content = json.load(f) prompt += json.dumps(file_content, indent=4) prompt += "\n\n" prompt += "Tu es prêt à répondre aux questions ?\n\n" return prompt def chat_with_mistral(user_input): #messages = [ChatMessage(role="user", content=user_input)] #chat_response = client.chat(model=model, messages=messages) return 'Donne moi une clé API valide et je te réponds volontiers ;-)' #chat_response.choices[0].message.content # create a FastAPI app app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], # Allows all origins allow_credentials=True, allow_methods=["*"], # Allows all methods allow_headers=["*"], # Allows all headers ) # create a static directory to store the static files static_dir = Path('./static') static_dir.mkdir(parents=True, exist_ok=True) # mount FastAPI StaticFiles server app.mount("/static", StaticFiles(directory=static_dir), name="static") # templating templates = Jinja2Templates(directory="static") with open('data/departements.geojson', 'r') as f: departements = json.load(f) with open('data/regions.geojson', 'r') as f: regions = json.load(f) with open('videos.json', 'r') as f: videos = json.load(f) def create_world_map(lat, lon, dpmts=False, rgns= False): fig = go.Figure() for video_id, video_info in videos.items(): name = video_info['name'] url = video_info['url'] location = video_info['location'] video_lat = video_info['lat'] video_lon = video_info['lon'] fig.add_trace(go.Scattermapbox( mode='markers', lon=[video_lon], lat=[video_lat], marker=go.scattermapbox.Marker( size=14, color='blue' ), text=name, hoverinfo='text', showlegend=False, visible=True, )) if dpmts : for feature_departement in departements['features']: if feature_departement['geometry']['type'] == 'Polygon': coords = feature_departement['geometry']['coordinates'][0] lons, lats = zip(*coords) lons = list(lons) lats = list(lats) fig.add_trace(go.Scattermapbox( mode='lines', lon=lons + [lons[0]], lat=lats + [lats[0]], marker=go.scattermapbox.Marker( size=14 ), text=feature_departement['properties']['nom'], hoverinfo='text', line=dict( color='blue', width=1 ), showlegend=False, visible=True, )) if rgns: for feature_region in regions['features']: if feature_region['geometry']['type'] == 'Polygon': coords = feature_region['geometry']['coordinates'][0] lons, lats = zip(*coords) lons = list(lons) lats = list(lats) fig.add_trace(go.Scattermapbox( mode='lines', lon=lons + [lons[0]], lat=lats + [lats[0]], hoverinfo='text', line=dict( color='red', # Set the line color to red width=1, # Set the width of the line ), showlegend=False, visible=True, )) fig.add_trace(go.Scattermapbox( lat=[lat], lon=[lon], mode='markers', marker=go.scattermapbox.Marker(size=14, color='red'), text=['Location'], showlegend=False, hoverinfo='none' )) fig.update_layout( autosize=True, plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', mapbox_style="open-street-map", hovermode='closest', mapbox=dict( bearing=0, center=go.layout.mapbox.Center( lat=lat, lon=lon, ), pitch=0, zoom=5 ), ) return fig # Profile stuff class UserProfile(BaseModel): name: str age: int location: str lat: float lon: float class UserLocation(BaseModel): city: str class Weather(BaseModel): temperature: float weather: str @app.post("/user_profile") def save_user_profile(user_profile: UserProfile): with open('user_profile.json', 'w') as f: json.dump(user_profile.dict(), f) return user_profile.dict() @app.get("/user_profile") def load_user_profile(): with open('user_profile.json', 'r') as f: user_profile = json.load(f) return UserProfile(**user_profile) @app.put("/user_profile") def update_user_profile(user_profile: UserProfile): with open('user_profile.json', 'w') as f: json.dump(user_profile.dict(), f) return user_profile @app.get("/weather") def load_weather(): with open('Weather.json', 'r') as f: w = json.load(f) return Weather(**w) # Load user location def load_user_location(): with open('user_location.json', 'r') as f: user_location = json.load(f) return UserLocation(**user_location) # Save weather information def save_weather(weather: Weather): with open('Weather.json', 'w') as f: json.dump(weather.dict(), f) @app.post("/user_location") async def set_user_location(user_location: UserLocation): # Save the user location as a JSON file with open('user_location.json', 'w') as f: json.dump(user_location.dict(), f) response = Response(headers={"Location": "/home"}) response.status_code = 303 return response # load user profile on startup user_profile = load_user_profile() weather = load_weather() @app.get("/", response_class=HTMLResponse) async def enter_location(): return """

Bienvenue sur votre AI-dashboard connecté

Connectez-vous et accédez à des informations personnalisées !

Fonctionnalités



Mistral Logo

© 2024 AgriHackteurs

""" # Home page : using the user profile, display the weather and chat with Mistral AI @app.get("/home", response_class=HTMLResponse) async def home( request: Request, user_profile: UserProfile = Depends(load_user_profile), weather: Weather = Depends(load_weather), ): with open('user_location.json', 'r') as f: user_location = json.load(f) # Get weather data for the user location weather_data, lat, lon = get_weather(user_location['city'], today) # Convert the keys to datetime objects weather_times = {datetime.strptime( time, '%Y-%m-%d %H:%M:%S'): info for time, info in weather_data.items()} # Find the time closest to the current time current_time = datetime.now() #closest_time = min(weather_times.keys(), # key=lambda time: abs(time - current_time)) # Extract weather information for the closest time #weather_info = weather_times[closest_time] # Extract temperature and weather from the weather information #temperature = float(weather_info.split( # ', ')[1].split('°C')[0].split(': ')[1]) #weather = weather_info.split(', ')[2].split(': ')[1] # Create a Weather object from the weather data temperature = float(20) weather = 'Sunny' weather = Weather(temperature=temperature, weather=weather) temperature = weather.temperature weather = weather.weather # create the map fig = create_world_map(lat, lon, dpmts=True, rgns=True) # save the map as a file map_file = static_dir / "map.html" fig.write_html(str(map_file), config={'displayModeBar': False}) # display the map map_html = f'' # initialize the chatbot with the system prompt system_prompt = create_prompt_system() chat_with_mistral(system_prompt) return templates.TemplateResponse("layout.html", {"request": request, "user_profile": user_profile, "weather": weather, "map_html": map_html}) class ChatInput(BaseModel): user_input: str @app.post("/chat") async def chat(chat_input: ChatInput): print(chat_input.user_input) return chat_with_mistral(chat_input.user_input) # summarize all the information from the json files @app.get("/report") async def report(): # load all the json files in the root report = "" for file in Path('.').glob('*.json'): with open(file, 'r') as f: report += f"Contexte: {file.stem}\n\n" # convert the json to a string using the json module file_content = json.load(f) report += json.dumps(file_content, indent=4) report += "\n\n" report += "Synthétise les informations pour l'utilisateur : \n\n" # ask mistral to summarize the report chat_response = client.chat(model=model, messages=[ ChatMessage(role="user", content=report)]) return chat_response.choices[0].message.content