import os import gradio as gr from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, ServiceContext from llama_index.readers.web import SimpleWebPageReader from llama_index.llms.mistralai import MistralAI from llama_index.embeddings.mistralai import MistralAIEmbedding from llama_index.core.query_engine import RetrieverQueryEngine title = "Gaia Mistral 8x7b Chat RAG URL Demo" description = "Example of an assistant with Gradio, RAG from url and Mistral AI via its API" placeholder = "Vous pouvez me posez une question sur ce contexte, appuyer sur Entrée pour valider" placeholder_url = "Extract text from this url" llm_model = 'open-mixtral-8x7b' # choose api_key from .env or from input field # placeholder_api_key = "API key" env_api_key = os.environ.get("MISTRAL_API_KEY") query_engine = None with gr.Blocks() as demo: gr.Markdown(""" ### Welcome to Gaia Level 2 Demo Add an URL at the bottom of the interface before interacting with the Chat. This demo allows you to interact with a webpage and then ask questions to Mistral APIs. Mistral will answer with the context extracted from the webpage. """) # with gr.Row(): # api_key_text_box = gr.Textbox(placeholder=placeholder_api_key, container=False, scale=7) def setup_with_url(url): global query_engine # Set-up clients llm = MistralAI(api_key=env_api_key,model=llm_model) embed_model = MistralAIEmbedding(model_name='mistral-embed', api_key=env_api_key) service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embed_model) # Set-up db documents = SimpleWebPageReader(html_to_text=True).load_data([url]) index = VectorStoreIndex.from_documents(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=15) return placeholder gr.Markdown(""" ### 1 / Extract data from URL """) with gr.Row(): url_msg = gr.Textbox(placeholder=placeholder_url, container=False, scale=7) url_btn = gr.Button(value="Process url ✅", interactive=True) url_btn.click(setup_with_url, [url_msg], url_msg, show_progress= "full") gr.Markdown(""" ### 2 / Ask a question about this context """) chatbot = gr.Chatbot() msg = gr.Textbox(placeholder=placeholder) clear = gr.ClearButton([msg, chatbot]) def respond(message, chat_history): response = query_engine.query(message) chat_history.append((message, str(response))) return chat_history msg.submit(respond, [msg, chatbot], [chatbot]) demo.title = title demo.launch()