import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline # Load model & tokenizer dari Hugging Face Hub model = AutoModelForSequenceClassification.from_pretrained("galennolan/indobert-b-p1-indoemotion-5class") tokenizer = AutoTokenizer.from_pretrained("galennolan/indobert-b-p1-indoemotion-5class") # Inisialisasi pipeline emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) # Fungsi prediksi def predict_emotion(text): result = emotion_classifier(text)[0] label = result['label'] score = round(result['score'], 4) return f"{label} ({score})" # Gradio Interface demo = gr.Interface(fn=predict_emotion, inputs=gr.Textbox(lines=3, placeholder="Masukkan teks..."), outputs="text", title="Klasifikasi Emosi Bahasa Indonesia", description="Model IndoBERT untuk mendeteksi 5 emosi dari teks Bahasa Indonesia.") # Jalankan saat local testing if __name__ == "__main__": demo.launch()