Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,831 Bytes
4a46abc b8ddec2 4a46abc a64af65 4a46abc a64af65 4a46abc 7d1a2ad 4a46abc 7d1a2ad 4a46abc 1740c2f bf3675a 7156ea2 1740c2f 4a46abc a64af65 4a46abc b9405c8 4a46abc a64af65 4a46abc b8ddec2 f226f06 b8ddec2 4a46abc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from data_loader import CATEGORIES, DESCRIPTION_HTML, CARDS
from visualization import (
get_performance_chart,
get_performance_cost_chart,
)
from utils import (
get_rank_badge,
get_score_bar,
get_type_badge,
)
def filter_leaderboard(df, model_type, category, sort_by):
filtered_df = df.copy()
if model_type != "All":
filtered_df = filtered_df[filtered_df["Model Type"].str.strip() == model_type]
dataset_columns = CATEGORIES.get(category, ["Model Avg"])
filtered_df["Category Score"] = filtered_df[dataset_columns].mean(axis=1)
if sort_by == "Performance":
filtered_df = filtered_df.sort_values(by="Category Score", ascending=False)
else:
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True)
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
perf_chart = get_performance_chart(filtered_df, category)
cost_chart = get_performance_cost_chart(filtered_df, category)
# Generate styled table HTML
table_html = f"""
<style>
@media (prefers-color-scheme: dark) {{
:root {{
--bg-color: #1a1b1e;
--text-color: #ffffff;
--border-color: #2d2e32;
--hover-bg: #2d2e32;
--note-bg: #2d2e32;
--note-text: #a1a1aa;
--accent-blue: #60A5FA;
--accent-purple: #A78BFA;
--accent-pink: #F472B6;
--score-bg: rgba(255, 255, 255, 0.1);
}}
}}
@media (prefers-color-scheme: light) {{
:root {{
--bg-color: #ffffff;
--text-color: #000000;
--border-color: #e5e7eb;
--hover-bg: #f3f4f6;
--note-bg: #f3f4f6;
--note-text: #4b5563;
--accent-blue: #3B82F6;
--accent-purple: #8B5CF6;
--accent-pink: #EC4899;
--score-bg: rgba(0, 0, 0, 0.1);
}}
}}
.dark-table-container {{
background: var(--bg-color);
border-radius: 12px;
padding: 1px;
margin: 20px 0;
}}
.dark-styled-table {{
width: 100%;
border-collapse: collapse;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
background: var(--bg-color);
color: var(--text-color);
}}
.dark-styled-table thead {{
position: sticky;
top: 0;
background: var(--bg-color);
z-index: 1;
}}
.dark-styled-table th {{
padding: 16px;
text-align: left;
font-weight: 500;
color: var(--text-color);
border-bottom: 1px solid var(--border-color);
}}
.dark-styled-table td {{
padding: 16px;
border-bottom: 1px solid var(--border-color);
color: var(--text-color);
}}
.dark-styled-table tbody tr:hover {{
background: var(--hover-bg);
}}
.model-cell {{
font-weight: 500;
}}
.score-cell {{
font-weight: 500;
}}
.note-box {{
margin-top: 20px;
padding: 16px;
background: var(--note-bg);
border-radius: 8px;
color: var(--note-text);
}}
</style>
<div class="note-box">
<p style="margin: 0; font-size: 1em;">
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation. DeepSeek V3 and R1 were excluded from rankings due to limited function support. Pricing for Gemini models shown reflects <a href="https://cloud.google.com/vertex-ai/generative-ai/pricing">Vertex AI</a>. Google AI Studio offers <a href="https://ai.google.dev/gemini-api/docs/pricing">Gemini API Access</a> at a lower cost with an API Key.
</p>
</div>
<div class="dark-table-container">
<table class="dark-styled-table">
<thead>
<tr>
<th>Rank</th>
<th>Model</th>
<th>Type</th>
<th>Vendor</th>
<th>Cost (I/O)</th>
<th>Avg Category Score (TSQ)</th>
</tr>
</thead>
<tbody>
"""
for _, row in filtered_df.iterrows():
table_html += f"""
<tr>
<td>{get_rank_badge(row['Rank'])}</td>
<td class="model-cell">{row['Model']}</td>
<td>{get_type_badge(row['Model Type'])}</td>
<td class="vendor-cell">{row['Vendor']}</td>
<td>${row['Input cost per million token']:.2f}/${row['Output cost per million token']:.2f}</td>
<td class="score-cell">{get_score_bar(row['Category Score'])}</td>
</tr>
"""
return table_html, perf_chart, cost_chart
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
with gr.Tab("Leaderboard"):
gr.HTML(HEADER_CONTENT + CARDS)
gr.HTML(DESCRIPTION_HTML)
# Filters row
with gr.Row(equal_height=True):
with gr.Column(scale=1):
model_type = gr.Dropdown(
choices=["All"] + df["Model Type"].unique().tolist(),
value="All",
label="Model Type",
)
with gr.Column(scale=1):
category = gr.Dropdown(
choices=list(CATEGORIES.keys()),
value=list(CATEGORIES.keys())[0],
label="Category",
)
with gr.Column(scale=1):
sort_by = gr.Radio(
choices=["Performance", "Cost"],
value="Performance",
label="Sort by",
)
# Content
output = gr.HTML()
plot1 = gr.Plot()
plot2 = gr.Plot()
gr.HTML(
"""<div class="note-box">
<p style="margin: 0; font-size: 1em;">
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation.
</p>
</div>"""
)
gr.HTML(METHODOLOGY)
for input_comp in [model_type, category, sort_by]:
input_comp.change(
fn=lambda m, c, s: filter_leaderboard(df, m, c, s),
inputs=[model_type, category, sort_by],
outputs=[output, plot1, plot2],
)
return output, plot1, plot2
|